Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn-Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman-Pettis theorem. With the inclusion...
Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, bu...
This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincare-Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm-Liouville problems. The presentation is clear and easy-to-understand, with figures and...
This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a f...
Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large...
Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with ...
A Course in Topological Combinatorics is the first undergraduate textbook on the field of topological combinatorics, a subject that has become an active and innovative research area in mathematics over the last thirty years with growing applications in math, computer science, and other applied areas. Topological combinatorics is concerned with solutions to combinatorial problems by applying topological tools. In most cases these solutions are very elegant and the connection between combinatorics and topology often arises as an unexpected surprise.
The textbook covers topics...
A Course in Topological Combinatorics is the first undergraduate textbook on the field of topological combinatorics, a subject that has beco...
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics...
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. Whil...
This introductory text is the first book about quantum principal bundles and their quantum connections which are natural generalizations to non-commutative geometry of principal bundles and their connections in differential geometry. To make for a more self-contained book there is also much background material on Hopf algebras, (covariant) differential calculi, braid groups and compatible conjugation operations. The approach is slow paced and intuitive in order to provide researchers and students in both mathematics and physics ready access to the material.
This introductory text is the first book about quantum principal bundles and their quantum connections which are natural generalizations to non-commut...
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the...
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory o...
This book provides the mathematical foundations of networks of linear control systems, developed from an algebraic systems theory perspective. This includes a thorough treatment of questions of controllability, observability, realization theory, as well as feedback control and observer theory. The potential of networks for linear systems in controlling large-scale networks of interconnected dynamical systems could provide insight into a diversity of scientific and technological disciplines. The scope of the book is quite extensive, ranging from introductory material to advanced topics of...
This book provides the mathematical foundations of networks of linear control systems, developed from an algebraic systems theory perspective. This...
Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be modern' and classical', is universally useful whereas the second part leads the reader...
Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of...
This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras and Hopf algebras. The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author's 2011 publication, An Introduction to Hopf Algebras. The book may be used as the main text or as a supplementary text for a graduate algebra course. Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields and...
This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalg...