This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics...
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. Whil...
This introductory text is the first book about quantum principal bundles and their quantum connections which are natural generalizations to non-commutative geometry of principal bundles and their connections in differential geometry. To make for a more self-contained book there is also much background material on Hopf algebras, (covariant) differential calculi, braid groups and compatible conjugation operations. The approach is slow paced and intuitive in order to provide researchers and students in both mathematics and physics ready access to the material.
This introductory text is the first book about quantum principal bundles and their quantum connections which are natural generalizations to non-commut...