A principal ingredient in the proof of the Moonshine Theorem, connecting the Monster group to modular forms, is the infinite dimensional Lie algebra of physical states of a chiral string on an orbifold of a 26 dimensional torus, called the Monster Lie algebra. It is a Borcherds-Kac-Moody Lie algebra with Lorentzian root lattice; and has an associated automorphic form having a product expansion describing its structure. Lie superalgebras are generalizations of Lie algebras, useful for depicting supersymmetry - the symmetry relating fermions and bosons. Most known examples of Lie...
A principal ingredient in the proof of the Moonshine Theorem, connecting the Monster group to modular forms, is the infinite dimensional Lie algebr...
A principal ingredient in the proof of the Moonshine Theorem, connecting the Monster group to modular forms, is the infinite dimensional Lie algebra of physical states of a chiral string on an orbifold of a 26 dimensional torus, called the Monster Lie algebra. It is a Borcherds-Kac-Moody Lie algebra with Lorentzian root lattice; and has an associated automorphic form having a product expansion describing its structure. Lie superalgebras are generalizations of Lie algebras, useful for depicting supersymmetry - the symmetry relating fermions and bosons. Most known examples of Lie...
A principal ingredient in the proof of the Moonshine Theorem, connecting the Monster group to modular forms, is the infinite dimensional Lie algebr...
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the...
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory o...
Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be modern' and classical', is universally useful whereas the second part leads the reader...
Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of...