The book provides an extensive introduction to queueing models driven by Levy-processes as well as a systematic account of the literature on Levy-driven queues. The objective is to make the reader familiar with the wide set of probabilistic techniques that have been developed over the past decades, including transform-based techniques, martingales, rate-conservation arguments, change-of-measure, importance sampling, and large deviations. On the application side, it demonstrates how Levy traffic models arise when modelling current queueing-type systems (as communication networks) and...
The book provides an extensive introduction to queueing models driven by Levy-processes as well as a systematic account of the literature on Levy-d...
This textbook treats two important and related matters in convex geometry: the quantification of symmetry of a convex set-measures of symmetry-and the degree to which convex sets that nearly minimize such measures of symmetry are themselves nearly symmetric-the phenomenon of stability.
This textbook treats two important and related matters in convex geometry: the quantification of symmetry of a convex set-measures of symmetry-and the...
This volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics.
Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz'ya inequalities; inequalities of Hardy-type involving...
This volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The ine...
This book is devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new...
This book is devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. T...
Designed for intermediate graduate studies, this text will broaden students' core knowledge of differential geometry providing foundational material to relevant topics in classical differential geometry. The method of moving frames, a natural means for discovering and proving important results, provides the basis of treatment for topics discussed. Its application in many areas helps to connect the various geometries and to uncover many deep relationships, such as the Lawson correspondence. The nearly 300 problems and exercises range from simple applications to open problems. Exercises are...
Designed for intermediate graduate studies, this text will broaden students' core knowledge of differential geometry providing foundational materia...
This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh...
This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advan...
This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh...
This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advan...
This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume s ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or...
This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. ...