The present book is a marvelous introduction in the modern theory of manifolds and differential forms. The undergraduate student can closely examine tangent spaces, basic concepts of differential forms, integration on manifolds, Stokes theorem, de Rham- cohomology theorem, differential forms on Riema-nnian manifolds, elements of the theory of differential equations on manifolds (Laplace-Beltrami operators). Every chapter contains useful exercises for the students. ZENTRALBLATT MATH
The present book is a marvelous introduction in the modern theory of manifolds and differential forms. The undergraduate student can closely examine t...
In recent years, I have been teaching a junior-senior-level course on the classi- cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa- rately. The remainder of the book is an exploration of questions that arise natu- rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The...
In recent years, I have been teaching a junior-senior-level course on the classi- cal geometries. This book has grown out of that teaching experience....
Calculus of real-valued functions of several real variables, also known as m- tivariable calculus, is a rich and fascinating subject. On the one hand, it seeks to extend eminently useful and immensely successful notions in one-variable calculus such as limit, continuity, derivative, and integral to "higher dim- sions. " On the other hand, the fact that there is much more room to move n about in the n-space R than on the real line R brings to the fore deeper geometric and topological notions that play a signi?cant role in the study of functions of two or more variables. Courses in...
Calculus of real-valued functions of several real variables, also known as m- tivariable calculus, is a rich and fascinating subject. On the one hand,...
The Subject A little explanation is in order for our choice of the title Linear Opti- 1 mization (and corresponding terminology) for what has traditionally been called Linear Programming.Theword programming in this context can be confusing and/or misleading to students. Linear programming problems are referred to as optimization problems but the general term linear p- gramming remains. This can cause people unfamiliar with the subject to think that it is about programming in the sense of writing computer code. It isn't. This workbook is about the beautiful mathematics underlying the ideas of...
The Subject A little explanation is in order for our choice of the title Linear Opti- 1 mization (and corresponding terminology) for what has traditio...
The Mathematics of Finance has been a hot topic ever since the discovery of the Black-Scholes option pricing formulas in 1973. Unfortunately, there are very few undergraduate textbooks in this area. This book is specifically written for advanced undergraduate or beginning graduate students in mathematics, finance or economics. This book concentrates on discrete derivative pricing models, culminating in a careful and complete derivation of the Black-Scholes option pricing formulas as a limiting case of the Cox-Ross-Rubinstein discrete model.
This second edition is a complete rewrite...
The Mathematics of Finance has been a hot topic ever since the discovery of the Black-Scholes option pricing formulas in 1973. Unfortunately, there...
"The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity. The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all, this is an excellent work, of equally high value for both student and teacher." Zentralblatt fur...
"The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analy...
The original version of this book, handed out to my students in weekly in- stallments, had a certain rugged charm. Now that it is dressed up as a Springer UTM volume, I feel very much like Alfred Dolittle at Eliza's wedding. I hope the reader will still sense the presence of a young lecturer, enthusiastically urging his audience to enjoy linear algebra. The book is structured in various ways. For example, you will find a test in each chapter; you may consider the material up to the test as basic and the material following the test as supplemental. In principle, it should be possible to go...
The original version of this book, handed out to my students in weekly in- stallments, had a certain rugged charm. Now that it is dressed up as a Spri...
Linear Algebra Through Geometry introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space. Topics include systems of linear equations in n variable, inner products, symmetric matrices, and...
Linear Algebra Through Geometry introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geom...
"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became...
"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pira...
This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide an outline of both the topological theory and the uniform theory, with an emphasis on the relation between the two. Although I hope that the prospec- tive specialist may find it useful as an introduction it is the non-specialist I have had more in mind in selecting the contents. Thus I have tended to avoid the ingenious examples and counterexamples which often occupy much ofthe space in books on general topology, and I have tried to keep the...
This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide...