ISBN-13: 9781461425212 / Angielski / Miękka / 2012 / 477 str.
ISBN-13: 9781461425212 / Angielski / Miękka / 2012 / 477 str.
Calculus of real-valued functions of several real variables, also known as m- tivariable calculus, is a rich and fascinating subject. On the one hand, it seeks to extend eminently useful and immensely successful notions in one-variable calculus such as limit, continuity, derivative, and integral to "higher dim- sions. " On the other hand, the fact that there is much more room to move n about in the n-space R than on the real line R brings to the fore deeper geometric and topological notions that play a signi?cant role in the study of functions of two or more variables. Courses in multivariable calculus at an undergraduate level and even at an advanced level are often faced with the unenviable task of conveying the multifarious and multifaceted aspects of multivariable calculus to a student in the span of just about a semester or two. Ambitious courses and teachers would try to give some idea of the general Stokes's theorem for di?erential forms on manifolds as a grand generalization of the fundamental theorem of calculus, and prove the change of variables formula in all its glory. They would also try to do justice to important results such as the implicit function theorem, which really have no counterpart in one-variable calculus. Most courses would require the student to develop a passing acquaintance with the theorems of Green, Gauss, and Stokes, never mind the tricky questions about orientability, simple connectedness, etc.
This self-contained textbook gives a thorough exposition of multivariable calculus. It can be viewed as a sequel to the one-variable calculus text, A Course in Calculus and Real Analysis, published in the same series. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. For example, when the general definition of the volume of a solid is given using triple integrals, the authors explain why the shell and washer methods of one-variable calculus for computing the volume of a solid of revolution must give the same answer. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus.§This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Moreover, the emphasis is on a geometric approach to such basic notions as local extremum and saddle point. §Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike. There is also an informative section of "Notes and Comments indicating some novel features of the treatment of topics in that chapter as well as references to relevant literature. The only prerequisite for this text is a course in one-variable calculus.