The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. The book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of...
The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds....
This is a new, completely revised, updated and enlarged edition of the author's Ergebnisse vol. 46: "Spin Glasses: A Challenge for Mathematicians" in two volumes (this is the 2nd volume). In the eighties, a group of theoretical physicists introduced several models for certain disordered systems, called "spin glasses." These models are simple and rather canonical random structures, of considerable interest for several branches of science (statistical physics, neural networks and computer science). The physicists studied them by non-rigorous methods and predicted spectacular behaviors. This...
This is a new, completely revised, updated and enlarged edition of the author's Ergebnisse vol. 46: "Spin Glasses: A Challenge for Mathematicians" ...
The aim of this book is to serve both as an introduction to profinite groups and as a reference for specialists in some areas of the theory. The book is reasonably self-contained. Profinite groups are Galois groups. As such they are of interest in algebraic number theory. Much of recent research on abstract infinite groups is related to profinite groups because residually finite groups are naturally embedded in a profinite group. In addition to basic facts about general profinite groups, the book emphasizes free constructions (particularly free profinite groups and the structure of their...
The aim of this book is to serve both as an introduction to profinite groups and as a reference for specialists in some areas of the theory. The bo...
This book is about some recent work in a subject usually considered part of "logic" and the" foundations of mathematics," but also having close connec tions with philosophy and computer science. Namely, the creation and study of "formal systems for constructive mathematics." The general organization of the book is described in the" User's Manual" which follows this introduction, and the contents of the book are described in more detail in the introductions to Part One, Part Two, Part Three, and Part Four. This introduction has a different purpose; it is intended to provide the reader with a...
This book is about some recent work in a subject usually considered part of "logic" and the" foundations of mathematics," but also having close connec...
Es sei 9 eine endlich dimensionale Lie-Algebra uber dem Korper der komple xen Zahlen. In der Darstellungstheorie von gist eine der am einfachsten zu stellenden Fragen die nach einer Beschreibung aller irreduziblen Darstellungen von 9 oder (iiquivalent dazu) aller einfacher Moduln uber der universellen ein hullenden Algebra U (g) von g. Eine einfache Antwort auf diese Frage hat man nur, wenn 9 kommutativ ist. Hier ist auch U(g) kommutativ, also entsprechen die Isomorphieklassen einfa cher U (g)-Moduln eindeutig den maximal en Idealen in U (g). Da hier U (g) zur Algebra der polynomialen...
Es sei 9 eine endlich dimensionale Lie-Algebra uber dem Korper der komple xen Zahlen. In der Darstellungstheorie von gist eine der am einfachsten zu s...
My original introduction to this subject was through conservations, and ultimate ly joint work with C. A. Micchelli. I am grateful to him and to Profs. C. de Boor, E. W. Cheney, S. D. Fisher and A. A. Melkman who read various portions of the manuscript and whose suggestions were most helpful. Errors in accuracy and omissions are totally my responsibility. I would like to express my appreciation to the SERC of Great Britain and to the Department of Mathematics of the University of Lancaster for the year spent there during which large portions of the manuscript were written, and also to the...
My original introduction to this subject was through conservations, and ultimate ly joint work with C. A. Micchelli. I am grateful to him and to Profs...
The theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's. It is an updated and corrected English edition of the author's book in Japanese published by Kinokuniya, Tokyo in 1985. Toric varieties are here treated as complex analytic spaces. Without assuming much prior knowledge of algebraic geometry, the author shows...
The theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex f...
In the case of completely integrable systems, periodic solutions are found by inspection. For nonintegrable systems, such as the three-body problem in celestial mechanics, they are found by perturbation theory: there is a small parameter in the problem, the mass of the perturbing body for instance, and for = 0 the system becomes completely integrable. One then tries to show that its periodic solutions will subsist for -# 0 small enough. Poincare also introduced global methods, relying on the topological properties of the flow, and the fact that it preserves the 2-form L =l dPi 1 dqi' The most...
In the case of completely integrable systems, periodic solutions are found by inspection. For nonintegrable systems, such as the three-body problem in...
Ever since the discovery of the five platonic solids in ancient times, the study of symmetry and regularity has been one of the most fascinating aspects of mathematics. Quite often the arithmetical regularity properties of an object imply its uniqueness and the existence of many symmetries. This interplay between regularity and symmetry properties of graphs is the theme of this book. Starting from very elementary regularity properties, the concept of a distance-regular graph arises naturally as a common setting for regular graphs which are extremal in one sense or another. Several other...
Ever since the discovery of the five platonic solids in ancient times, the study of symmetry and regularity has been one of the most fascinating aspec...
It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Kolmogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians. In the first part of this Ergebnisse-Bericht, Lazutkin succeeds in giving a complete and self-contained exposition of the subject, including a part on Hamiltonian dynamics....
It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic e...