This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups." The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many...
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups." The aim of the survey by A. Bialynicki-Birula i...
Up to a certain time the attention of mathematicians was concentrated on the study of individual objects, for example, specific elementary functions or curves defined by special equations. With the creation of the method of Fourier series, which allowed mathematicians to work with 'arbitrary' functions, the individual approach was replaced by the 'class' approach, in which a particular function is considered only as an element of some 'function space'. More or less simultane ously the development of geometry and algebra led to the general concept of a linear space, while in analysis the basic...
Up to a certain time the attention of mathematicians was concentrated on the study of individual objects, for example, specific elementary functions o...
Presents both the historical development and the current state of the art of the theory of imbedding of function spaces. All definitions and main theorem formulations needed to understand the modern literature on spaces of differentiable functions are included.
Presents both the historical development and the current state of the art of the theory of imbedding of function spaces. All definitions and main theo...
to Homotopy Theory O. Ya. Viro, D. B. Fuchs Translated from the Russian by C. J. Shaddock Contents Chapter 1. Basic Concepts . . . . . . . . . . . . ....
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerations such as differential invariants and jets as well as global ideas, such as Morse theory and characteristic classes. In this volume of the Encyclopaedia, the authors give a tour of the principal areas and methods of modern differential geomerty. The book is structured so that the reader may choose parts of the text to read and still take away a completed picture of some area of differential geometry. Beginning at the introductory level...
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerati...
This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including...
This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theor...
The book contains a comprehensive account of the structure and classification of Lie groups and finite-dimensional Lie algebras (including semisimple, solvable, and of general type). In particular, a modern approach to the description of automorphisms and gradings of semisimple Lie algebras is given. A special chapter is devoted to models of the exceptional Lie algebras. The book contains many tables and will serve as a reference. At the same time many results are accompanied by short proofs. Onishchik and Vinberg are internationally known specialists in their field and well-known for their...
The book contains a comprehensive account of the structure and classification of Lie groups and finite-dimensional Lie algebras (including semisimple,...
A two-part volume containing a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications, and a detailed review of recent investigations concerning the function-theoretical pecularities of polyanalytic functions (boundary behaviour, value distributions, degeneration, uniqueness etc).
A two-part volume containing a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applicat...
Ever since its invention in 1929 the Dirac equation has played a fundamental role in various areas of modern physics and mathematics. Its applications are so widespread that a description of all aspects cannot be done with sufficient depth within a single volume. In this book the emphasis is on the role of the Dirac equation in the relativistic quantum mechanics of spin-1/2 particles. We cover the range from the description of a single free particle to the external field problem in quantum electrodynamics. Relativistic quantum mechanics is the historical origin of the Dirac equation and has...
Ever since its invention in 1929 the Dirac equation has played a fundamental role in various areas of modern physics and mathematics. Its applications...
Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some key laws of statistical physics can also be tested or even established by mathematically rigorous tools. The mathematical methods are most beautiful but sometimes quite involved. This collection of surveys written by leading researchers of the fields - mathematicians, physicists or mathematical physicists - treat both mathematically rigourous results, and evolving physical theories where the methods are analytic or computational. Some basic...
Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some k...