The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered include: constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, and Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. The text will be a...
The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from q...
Schubert varieties provide an inductive tool for studying flag varieties. This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory on the one hand and standard monomial theory for Schubert varieties in certain special flag varieties on the other.
Schubert varieties provide an inductive tool for studying flag varieties. This book is mainly a detailed account of a particularly interesting inst...
Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of...
Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have di...
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs...
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they ...
This book presents some facts and methods of the Mathematical Control Theory treated from the geometric point of view. The book is mainly based on graduate courses given by the first coauthor in the years 2000-2001 at the International School for Advanced Studies, Trieste, Italy. Mathematical prerequisites are reduced to standard courses of Analysis and Linear Algebra plus some basic Real and Functional Analysis. No preliminary knowledge of Control Theory or Differential Geometry is required. What this book is about? The classical deterministic physical world is described by smooth dynamical...
This book presents some facts and methods of the Mathematical Control Theory treated from the geometric point of view. The book is mainly based on gra...
to the Encyclopaedia Subseries on Operator Algebras and Non-Commutative Geometry The theory of von Neumann algebras was initiated in a series of papers by Murray and von Neumann in the 1930's and 1940's. A von Neumann algebra is a self-adjoint unital subalgebra M of the algebra of bounded operators of a Hilbert space which is closed in the weak operator topology. According to von Neumann's bicommutant theorem, M is closed in the weak operator topology if and only if it is equal to the commutant of its commutant. A factor is a von Neumann algebra with trivial centre and the work of Murray and...
to the Encyclopaedia Subseries on Operator Algebras and Non-Commutative Geometry The theory of von Neumann algebras was initiated in a series of paper...
Of making many books there is no end; and much study is a weariness of the flesh. Eccl. 12.12. 1. In the beginning Riemann created the surfaces. The periods of integrals of abelian differentials on a compact surface of genus 9 immediately attach a g dimensional complex torus to X. If 9 2, the moduli space of X depends on 3g - 3 complex parameters. Thus problems in one complex variable lead, from the very beginning, to studies in several complex variables. Complex tori and moduli spaces are complex manifolds, i.e. Hausdorff spaces with local complex coordinates Z 1, ..., Zn; holomorphic...
Of making many books there is no end; and much study is a weariness of the flesh. Eccl. 12.12. 1. In the beginning Riemann created the surfaces. The p...
Preface In the axioms of probability theory proposed by Kolmogorov the basic "probabilistic" object is the concept of a probability model or probability space. This is a triple (n, F, P), where n is the space of elementary events or outcomes, F is a a-algebra of subsets of n announced by the events and P is a probability measure or a probability on the measure space (n, F). This generally accepted system of axioms of probability theory proved to be so successful that, apart from its simplicity, it enabled one to embrace the classical branches of probability theory and, at the same time, it...
Preface In the axioms of probability theory proposed by Kolmogorov the basic "probabilistic" object is the concept of a probability model or probabili...
This research monograph reports on recent work on the theoryof singular Siegel modular forms of arbitrary level.Singular modular forms are represented as linearcombinations of theta series. The reader is assumed toknowonly the basic theory of Siegel modular forms.
This research monograph reports on recent work on the theoryof singular Siegel modular forms of arbitrary level.Singular modular forms are represented...
Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is...
Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Eul...