This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including...
This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theor...
In the first part of this EMS volume Yu.V. Egorov gives an account of microlocal analysis as a tool for investigating partial differential equations. This method has become increasingly important in the theory of Hamiltonian systems. Egorov discusses the evolution of singularities of a partial differential equation and covers topics like integral curves of Hamiltonian systems, pseudodifferential equations and canonical transformations, subelliptic operators and Poisson brackets. The second survey written by V.Ya. Ivrii treats linear hyperbolic equations and systems. The author states...
In the first part of this EMS volume Yu.V. Egorov gives an account of microlocal analysis as a tool for investigating partial differential equations. ...
Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy problem, and its attendant question of well-posedness (or correctness). The authors address this question in the context of PDEs with constant coefficients and more general convolution equations in the first two chapters. The third chapter extends a number of these results to equations with variable coefficients. The second topic is the qualitative theory of second order linear PDEs, in particular, elliptic and parabolic equations. Thus, the second...
Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy pro...
This EMS volume gives an overview of the modern theory of elliptic boundary value problems, with contributions focusing on differential elliptic boundary problems and their spectral properties, elliptic pseudodifferential operators, and general differential elliptic boundary value problems in domains with singularities.
This EMS volume gives an overview of the modern theory of elliptic boundary value problems, with contributions focusing on differential elliptic bo...
0. 1. The Scope of the Paper. This article is mainly devoted to the oper ators indicated in the title. More specifically, we consider elliptic differential and pseudodifferential operators with infinitely smooth symbols on infinitely smooth closed manifolds, i. e. compact manifolds without boundary. We also touch upon some variants of the theory of elliptic operators in Rn. A separate article (Agranovich 1993) will be devoted to elliptic boundary problems for elliptic partial differential equations and systems. We now list the main topics discussed in the article. First of all, we ex pound...
0. 1. The Scope of the Paper. This article is mainly devoted to the oper ators indicated in the title. More specifically, we consider elliptic differe...
In the first part of this EMS volume Yu.V. Egorov gives an account of microlocal analysis as a tool for investigating partial differential equations. This method has become increasingly important in the theory of Hamiltonian systems. Egorov discusses the evolution of singularities of a partial differential equation and covers topics like integral curves of Hamiltonian systems, pseudodifferential equations and canonical transformations, subelliptic operators and Poisson brackets. The second survey written by V.Ya. Ivrii treats linear hyperbolic equations and systems. The author states...
In the first part of this EMS volume Yu.V. Egorov gives an account of microlocal analysis as a tool for investigating partial differential equations. ...
Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy problem, and its attendant question of well-posedness (or correctness). The authors address this question in the context of PDEs with constant coefficients and more general convolution equations in the first two chapters. The third chapter extends a number of these results to equations with variable coefficients. The second topic is the qualitative theory of second order linear PDEs, in particular, elliptic and parabolic equations. Thus, the second...
Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy pro...
Pseudo-differential operators belong to the most powerful tools in the analysis of partial differential equations. Basic achievements in the early sixties have initiated a completely new understanding of many old and important problems in analy sis and mathematical physics. The standard calculus of pseudo-differential and Fourier integral operators may today be considered as classical. The development has been continuous since the early days of the first essential applications to ellip ticity, index theory, parametrices and propagation of singularities for non-elliptic operators,...
Pseudo-differential operators belong to the most powerful tools in the analysis of partial differential equations. Basic achievements in the early six...