This book reflects the growing interest in the theory of Clifford algebras and their applications. The author has reworked his previous book on this subject, Topological Geometry, and has expanded and added material. As in the previous version, the author includes an exhaustive treatment of all the generalizations of the classical groups, as well as an excellent exposition of the classification of the conjugation anti-involution of the Clifford algebras and their complexifications. Toward the end of the book, the author introduces ideas from the theory of Lie groups and Lie algebras. This...
This book reflects the growing interest in the theory of Clifford algebras and their applications. The author has reworked his previous book on this s...
Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. Many mathematicians have established a modern view of the role played by algebraic geometry in recent years. This book presents some of these modern techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, while in appendices the author describes general, abstract...
Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies prov...
Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein...
Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examp...
This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of the century. It brings together ideas from group theory, algebraic geometry and number theory, topology, and analysis. Assuming only elementary algebra and complex analysis, the author develops the necessary background from topology, Riemann surface theory and number theory. The first part of the book is quite elementary, and leads up to the basic rigidity criteria for the realization of groups as Galois groups. The second part presents more...
This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of...
This modern introduction to Fourier analysis and partial differential equations is intended to be used with courses for beginning graduate students. With minimal prerequisites the authors take the reader from fundamentals to research topics in the area of nonlinear evolution equations, including a fairly complete discussion of local and global well-posedness for the nonlinear Schrodinger and the Korteweg-de Vries equations; they turn their attention, in the two final chapters, to the nonperiodic setting, concentrating on problems that do not occur in the periodic case.
This modern introduction to Fourier analysis and partial differential equations is intended to be used with courses for beginning graduate students. W...
Practical Foundations of Mathematics explains the basis of mathematical reasoning both in pure mathematics itself (algebra and topology in particular) and in computer science. In addition to the formal logic, this volume examines the relationship between computer languages and "plain English" mathematical proofs. The book introduces the reader to discrete mathematics, reasoning, and categorical logic. It offers a new approach to term algebras, induction and recursion and proves in detail the equivalence of types and categories. Each idea is illustrated by wide-ranging examples, and followed...
Practical Foundations of Mathematics explains the basis of mathematical reasoning both in pure mathematics itself (algebra and topology in particular)...
This concise introduction to ring theory, module theory and number theory is ideal for a first year graduate student, as well as being an excellent reference for working mathematicians in other areas. Starting from definitions, the book introduces fundamental constructions of rings and modules, as direct sums or products, and by exact sequences. It then explores the structure of modules over various types of ring: noncommutative polynomial rings, Artinian rings (both semisimple and not), and Dedekind domains. It also shows how Dedekind domains arise in number theory, and explicitly calculates...
This concise introduction to ring theory, module theory and number theory is ideal for a first year graduate student, as well as being an excellent re...
This textbook on the calculus of variations leads the reader from the basics to modern aspects of the theory. One-dimensional problems and the classical issues such as Euler-Lagrange equations are treated, as are Noether's theorem, Hamilton-Jacobi theory, and in particular geodesic lines, thereby developing some important geometric and topological aspects. The basic ideas of optimal control theory are also given. The second part of the book deals with multiple integrals. After a review of Lebesgue integration, Banach and Hilbert space theory and Sobolev spaces (with complete and detailed...
This textbook on the calculus of variations leads the reader from the basics to modern aspects of the theory. One-dimensional problems and the classic...
This book provides a thorough and self-contained study of interdependence and complexity in settings of functional analysis, harmonic analysis and stochastic analysis. It focuses on "dimension" as a basic counter of degrees of freedom, leading to precise relations between combinatorial measurements and various indices originating from the classical inequalities of Khintchin, Littlewood and Grothendieck. Topics include the (two-dimensional) Grothendieck inequality and its extensions to higher dimensions, stochastic models of Brownian motion, degrees of randomness and Frechet measures in...
This book provides a thorough and self-contained study of interdependence and complexity in settings of functional analysis, harmonic analysis and sto...
Here is a comprehensive introduction to holomorphic dynamics, that is, the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, for example, with the discovery of the Mandelbrot set, and work on chaotic behavior of quadratic maps. The mathematically unified treatment emphasizes the substantial role of classical complex analysis in understanding holomorphic dynamics and offers up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of...
Here is a comprehensive introduction to holomorphic dynamics, that is, the dynamics induced by the iteration of various analytic maps in complex numbe...