To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re- lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ- ential topology, etc.), we concentrate our attention on concrete prob- lems in low dimensions, introducing only as much algebraic machin- ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject...
To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re- lations of th...
The primary goal of these lectures is to introduce a beginner to the finite dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This...
The primary goal of these lectures is to introduce a beginner to the finite dimensional representations of Lie groups and Lie algebras. Since this goa...
From the ancient origins of algebraic geometry in the solutions of polynomial equations, through the triumphs of algebraic geometry during the last two centuries, intersection theory has played a central role. The aim of this book is to develop the foundations of this theory, and to indicate the range of classical and modern applications. Although a comprehensive history of this vast subject is not attempted, the author points out some of the striking early appearances of the ideas of intersection theory. A suggested prerequisite for the reading of this book is a first course in algebraic...
From the ancient origins of algebraic geometry in the solutions of polynomial equations, through the triumphs of algebraic geometry during the last tw...
This classic textbook, now reissued, offers a clear exposition of modern probability theory and of the interplay between the properties of metric spaces and probability measures. The new edition has been made even more self-contained than before; it now includes a foundation of the real number system and the Stone-Weierstrass theorem on uniform approximation in algebras of functions. Several other sections have been revised and improved, and the comprehensive historical notes have been further amplified. A number of new exercises have been added, together with hints for solution.
This classic textbook, now reissued, offers a clear exposition of modern probability theory and of the interplay between the properties of metric spac...
The theory of polycyclic groups is a branch of infinite group theory which has a rather different flavour from the rest of that subject. This book is a comprehensive account of the present state of this theory. As well as providing a connected and self-contained account of the group-theoretical background, it explains in detail how deep methods of number theory and algebraic group theory have been used to achieve some very recent and rather spectacular advances in the subject. Up to now, most of this material has only been available in scattered research journals, and some of it is new. This...
The theory of polycyclic groups is a branch of infinite group theory which has a rather different flavour from the rest of that subject. This book is ...
Over the last 45 years, Boolean theorem has been generalized and extended in several different directions and its applications have reached into almost every area of modern mathematics; but since it lies on the frontiers of algebra, geometry, general topology and functional analysis, the corpus of mathematics which has arisen in this way is seldom seen as a whole. In order to give a unified treatment of this rather diverse body of material, Dr Johnstone begins by developing the theory of locales (a lattice-theoretic approach to 'general topology without points' which has achieved some notable...
Over the last 45 years, Boolean theorem has been generalized and extended in several different directions and its applications have reached into almos...
This volume aims to present a straightforward and easily accessible survey of the analytic theory of quadratic forms. Written at an elementary level, the book provides a sound basis from which the reader can study advanced works and undertake original research. Roughly half a century ago C.L. Siegel discovered a new type of automorphic forms in several variables in connection with his famous work on the analytic theory of quadratic forms. Since then Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and...
This volume aims to present a straightforward and easily accessible survey of the analytic theory of quadratic forms. Written at an elementary level, ...
Complex Polynomials explores the geometric theory of polynomials and rational functions in the plane. Early chapters build the foundations of complex variable theory, melding together ideas from algebra, topology, and analysis. Throughout the book, the author introduces a variety of ideas and constructs theories around them, incorporating much of the classical theory of polynomials as he proceeds. These ideas are used to study a number of unsolved problems. Several solutions to problems are given, including a comprehensive account of the geometric convolution theory.
Complex Polynomials explores the geometric theory of polynomials and rational functions in the plane. Early chapters build the foundations of complex ...
Over the past two decades a general mathematical theory of infinite electrical networks has been developed. This is the first book to present the salient features of this theory in a coherent exposition. Using the basic tools of functional analysis and graph theory, the author presents the fundamental developments of the past two decades and discusses applications to other areas of mathematics. The first half of the book presents existence and uniqueness theorems for both infinite-power and finite-power voltage-current regimes, and the second half discusses methods for solving problems in...
Over the past two decades a general mathematical theory of infinite electrical networks has been developed. This is the first book to present the sali...