• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Algebraic Topology: A First Course » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Algebraic Topology: A First Course

ISBN-13: 9780387943275 / Angielski / Miękka / 1995 / 430 str.

William Fulton; P. R. Halmos; W. Fulton
Algebraic Topology: A First Course Fulton, William 9780387943275 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Algebraic Topology: A First Course

ISBN-13: 9780387943275 / Angielski / Miękka / 1995 / 430 str.

William Fulton; P. R. Halmos; W. Fulton
cena 161,21 zł
(netto: 153,53 VAT:  5%)

Najniższa cena z 30 dni: 154,04 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re- lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ- ential topology, etc.), we concentrate our attention on concrete prob- lems in low dimensions, introducing only as much algebraic machin- ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol- ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel- opment of the subject. What would we like a student to know after a first course in to- pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under- standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind- ing numbers and degrees of mappings, fixed-point theorems; appli- cations such as the Jordan curve theorem, invariance of domain; in- dices of vector fields and Euler characteristics; fundamental groups

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Topologia
Wydawca:
Springer
Seria wydawnicza:
Graduate Texts in Mathematics
Język:
Angielski
ISBN-13:
9780387943275
Rok wydania:
1995
Numer serii:
000009678
Ilość stron:
430
Waga:
0.64 kg
Wymiary:
23.47 x 15.85 x 2.18
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

I Calculus in the Plane.- 1 Path Integrals.- 1a. Differential Forms and Path Integrals.- 1b. When Are Path Integrals Independent of Path?.- 1c. A Criterion for Exactness.- 2 Angles and Deformations.- 2a. Angle Functions and Winding Numbers.- 2b. Reparametrizing and Deforming Paths.- 2c. Vector Fields and Fluid Flow.- II Winding Numbers.- 3 The Winding Number.- 3a. Definition of the Winding Number.- 3b. Homotopy and Reparametrization.- 3c. Varying the Point.- 3d. Degrees and Local Degrees.- 4 Applications of Winding Numbers.- 4a. The Fundamental Theorem of Algebra.- 4b. Fixed Points and Retractions.- 4c. Antipodes.- 4d. Sandwiches.- III Cohomology and Homology, I.- 5 De Rham Cohomology and the Jordan Curve Theorem.- 5a. Definitions of the De Rham Groups.- 5b. The Coboundary Map.- 5c. The Jordan Curve Theorem.- 5d. Applications and Variations.- 6 Homology.- 6a. Chains, Cycles, and H0U.- 6b. Boundaries, H1U, and Winding Numbers.- 6c. Chains on Grids.- 6d. Maps and Homology.- 6e. The First Homology Group for General Spaces.- IV Vector Fields.- 7 Indices of Vector Fields.- 7a. Vector Fields in the Plane.- 7b. Changing Coordinates.- 7c. Vector Fields on a Sphere.- 8 Vector Fields on Surfaces.- 8a. Vector Fields on a Torus and Other Surfaces.- 8b. The Euler Characteristic.- V Cohomology and Homology, II.- 9 Holes and Integrals.- 9a. Multiply Connected Regions.- 9b. Integration over Continuous Paths and Chains.- 9c. Periods of Integrals.- 9d. Complex Integration.- 10 Mayer—Vietoris.- 10a. The Boundary Map.- 10b. Mayer—Vietoris for Homology.- 10c. Variations and Applications.- 10d. Mayer—Vietoris for Cohomology.- VI Covering Spaces and Fundamental Groups, I.- 11 Covering Spaces.- 11a. Definitions.- 11b. Lifting Paths and Homotopies.- 11c. G-Coverings.- 11d. Covering Transformations.- 12 The Fundamental Group.- 12a. Definitions and Basic Properties.- 12b. Homotopy.- 12c. Fundamental Group and Homology.- VII Covering Spaces and Fundamental Groups, II.- 13 The Fundamental Group and Covering Spaces.- 13a. Fundamental Group and Coverings.- 13b. Automorphisms of Coverings.- 13c. The Universal Covering.- 13d. Coverings and Subgroups of the Fundamental Group.- 14 The Van Kampen Theorem.- 14a. G-Coverings from the Universal Covering.- 14b. Patching Coverings Together.- 14c. The Van Kampen Theorem.- 14d. Applications: Graphs and Free Groups.- VIII Cohomology and Homology, III.- 15 Cohomology.- 15a. Patching Coverings and ?ech Cohomology.- 15b. ?ech Cohomology and Homology.- 15c. De Rham Cohomology and Homology.- 15d. Proof of Mayer—Vietoris for De Rham Cohomology.- 16 Variations.- 16a. The Orientation Covering.- 16b. Coverings from 1-Forms.- 16c. Another Cohomology Group.- 16d. G-Sets and Coverings.- 16e. Coverings and Group Homomorphisms.- 16f. G-Coverings and Cocycles.- IX Topology of Surfaces.- 17 The Topology of Surfaces.- 17a. Triangulation and Polygons with Sides Identified.- 17b. Classification of Compact Oriented Surfaces.- 17c. The Fundamental Group of a Surface.- 18 Cohomology on Surfaces.- 18a. 1-Forms and Homology.- 18b. Integrals of 2-Forms.- 18c. Wedges and the Intersection Pairing.- 18d. De Rham Theory on Surfaces.- X Riemann Surfaces.- 19 Riemann Surfaces.- 19a. Riemann Surfaces and Analytic Mappings.- 19b. Branched Coverings.- 19c. The Riemann—Hurwitz Formula.- 20 Riemann Surfaces and Algebraic Curves.- 20a. The Riemann Surface of an Algebraic Curve.- 20b. Meromorphic Functions on a Riemann Surface.- 20c. Holomorphic and Meromorphic 1-Forms.- 20d. Riemann’s Bilinear Relations and the Jacobian.- 20e. Elliptic and Hyperelliptic Curves.- 21 The Riemann—Roch Theorem.- 21a. Spaces of Functions and 1-Forms.- 21b. Adeles.- 21c. Riemann—Roch.- 21d. The Abel—Jacobi Theorem.- XI Higher Dimensions.- 22 Toward Higher Dimensions.- 22a. Holes and Forms in 3-Space.- 22b. Knots.- 22c. Higher Homotopy Groups.- 22d. Higher De Rham Cohomology.- 22e. Cohomology with Compact Supports.- 23 Higher Homology.- 23a. Homology Groups.- 23b. Mayer—Vietoris for Homology.- 23c. Spheres and Degree.- 23d. Generalized Jordan Curve Theorem.- 24 Duality.- 24a. Two Lemmas from Homological Algebra.- 24b. Homology and De Rham Cohomology.- 24c. Cohomology and Cohomology with Compact Supports.- 24d. Simplicial Complexes.- Appendices.- Appendix A Point Set Topology.- A1. Some Basic Notions in Topology.- A2. Connected Components.- A3. Patching.- A4. Lebesgue Lemma.- Appendix B Analysis.- B1. Results from Plane Calculus.- B2. Partition of Unity.- Appendix C Algebra.- C1. Linear Algebra.- C2. Groups; Free Abelian Groups.- C3. Polynomials; Gauss’s Lemma.- Appendix D On Surfaces.- D1. Vector Fields on Plane Domains.- D2. Charts and Vector Fields.- D3. Differential Forms on a Surface.- Appendix E Proof of Borsuk’s Theorem.- Hints and Answers.- References.- Index of Symbols.

Fulton, William William Fulton is president of Solimar Research Gr... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia