Die Theorie der elliptischen Funktionen und Modulformen wird in der englischsprachigen Literatur im allgemeinen auf sehr hohem Niveau abgehandelt. Den Autoren ist es gelungen, eine Brucke von den elementaren Grundlagen zum aktuellen Forschungsstand zu schlagen. Ausgehend von den Weierstrassschen Arbeiten werden auch elliptische Kurven und komplexe Multiplikation behandelt. Der Teil uber elliptische Modulformen ist auch separat lesbar und enthalt neben Fundamentalbereichen und Dimensionsbestimmung auch ein Kapitel uber Hecke-Operatoren und Dirichlet-Reihen mit Funktionalgleichung. Grosses...
Die Theorie der elliptischen Funktionen und Modulformen wird in der englischsprachigen Literatur im allgemeinen auf sehr hohem Niveau abgehandelt. Den...
Die Ebene Geometrie von Koecher und Krieg betont - anders als vergleichbare Lehrbucher zu diesem Gebiet - den analytischen Standpunkt. Neben einer Einfuhrung in die axiomatische Geometrie affiner und projektiver Ebenen wird die klassische Schulgeometrie mit den Methoden der Linearen Algebra behandelt. Als weiterfuhrende Ergebnisse findet man z.B. den Satz von Feuerbach, den Satz von Morley uber das aus den Winkeldreiteilenden gebildete Dreieck oder den Satz von Pascal uber Kurven zweiten Grades. Das Buch bietet einen gut strukturierten Lehrtext zur Geometrie, der durch die Fulle von...
Die Ebene Geometrie von Koecher und Krieg betont - anders als vergleichbare Lehrbucher zu diesem Gebiet - den analytischen Standpunkt. Neben einer ...