Discrete mathematics is quickly becoming one of the most important areas of mathematical research, with applications to cryptography, linear programming, coding theory and the theory of computing. This book is aimed at undergraduate mathematics and computer science students interested in developing a feeling for what mathematics is all about, where mathematics can be helpful, and what kinds of questions mathematicians work on. The authors discuss a number of selected results and methods of discrete mathematics, mostly from the areas of combinatorics and graph theory, with a little number...
Discrete mathematics is quickly becoming one of the most important areas of mathematical research, with applications to cryptography, linear progra...
This book is intended to complement my Elements oi Algebra, and it is similarly motivated by the problem of solving polynomial equations. However, it is independent of the algebra book, and probably easier. In Elements oi Algebra we sought solution by radicals, and this led to the concepts of fields and groups and their fusion in the celebrated theory of Galois. In the present book we seek integer solutions, and this leads to the concepts of rings and ideals which merge in the equally celebrated theory of ideals due to Kummer and Dedekind. Solving equations in integers is the central problem...
This book is intended to complement my Elements oi Algebra, and it is similarly motivated by the problem of solving polynomial equations. However, it ...
The notes that eventually became this book were written between 1977 and 1985 for the course called Constructive Combinatorics at the University of Minnesota. This is a one-quarter (10 week) course for upper level undergraduate students. The class usually consists of mathematics and computer science majors, with an occasional engineering student.
The notes that eventually became this book were written between 1977 and 1985 for the course called Constructive Combinatorics at the University of Mi...
Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.
Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions...
This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide an outline of both the topological theory and the uniform theory, with an emphasis on the relation between the two. Although I hope that the prospec- tive specialist may find it useful as an introduction it is the non-specialist I have had more in mind in selecting the contents. Thus I have tended to avoid the ingenious examples and counterexamples which often occupy much ofthe space in books on general topology, and I have tried to keep the...
This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide...
This book is designed for a first course in nonlinear optimization. It starts with classical optimization notions from calculus and proceeds smoothly to a study of convex functions. This is followed by material on basic numerical methods, least squares, Karush-Kuhn-Tucker theory, penalty functions, and Lagrange multipliers. The book has been tested in the classroom; the approach is rigorous at all times and geometric intuition is developed. The numerical methods are up-to-date. The presentation emphasizes the mathematical ideas behind computer codes. The book is aimed at the student who has a...
This book is designed for a first course in nonlinear optimization. It starts with classical optimization notions from calculus and proceeds smoothly ...
The effectiveness of the algorithms of linear programming in solving problems is largely dependent upon the particular applications from which these problems arise. A first course in linear programming should not only allow one to solve many different types of problems in many different contexts but should provide deeper insights into the fields in which linear programming finds its utility. To this end, the emphasis throughtout Linear Programming and Its Applications is on the acquisition of linear programming skills via the algorithmic solution of small-scale problems both in the general...
The effectiveness of the algorithms of linear programming in solving problems is largely dependent upon the particular applications from which these p...
The principal objectives of this book are to define linear programming and its usefulness, to explain the operation and elementary theory of the simplex algorithm, to present duality theory in a simple fashion, and to give a well motivated account of matrix games.
The principal objectives of this book are to define linear programming and its usefulness, to explain the operation and elementary theory of the simpl...
In its most general form bifurcation theory is a theory of asymptotic solutions of nonlinear equations. By asymptotic solutions we mean, for example, steady solutions, time-periodic solutions, and quasi-periodic solutions. The purpose of this book is to teach the theory of bifurcation of asymptotic solutions of evolution problems governed by nonlinear differential equations. We have written this book for the broadest audience of potentially interested learners: engineers, biologists, chemists, physicists, mathematicians, economists, and others whose work involves understanding asymptotic...
In its most general form bifurcation theory is a theory of asymptotic solutions of nonlinear equations. By asymptotic solutions we mean, for example, ...
A book about numbers sounds rather dull. This one is not. Instead it is a lively story about one thread of mathematics-the concept of "number" told by eight authors and organized into a historical narrative that leads the reader from ancient Egypt to the late twentieth century. It is a story that begins with some of the simplest ideas of mathematics and ends with some of the most complex. It is a story that mathematicians, both amateur and professional, ought to know. Why write about numbers? Mathematicians have always found it diffi cult to develop broad perspective about their subject....
A book about numbers sounds rather dull. This one is not. Instead it is a lively story about one thread of mathematics-the concept of "number" told by...