Like any books on a subject as vast as this, this book has to have a point-of-view to guide the selection of topics. Naber takes the view that the rekindled interest that mathematics and physics have shown in each other of late should be fostered, and that this is best accomplished by allowing them to cohabit. The book weaves together rudimentary notions from the classical gauge theory of physics with the topological and geometrical concepts that became the mathematical models of these notions. The reader is asked to join the author on some vague notion of what an electromagnetic field might...
Like any books on a subject as vast as this, this book has to have a point-of-view to guide the selection of topics. Naber takes the view that the rek...
Computational electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make...
Computational electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the desi...
This undergraduate textbook introduces students of science and engineering to the fascinating field of optimization. It is a unique book that brings together the subfields of mathematical programming, variational calculus, and optimal control, thus giving students an overall view of all aspects of optimization in a single reference. As a primer on optimization, its main goal is to provide a succinct and accessible introduction to linear programming, nonlinear programming, numerical optimization algorithms, variational problems, dynamic programming, and optimal control. Prerequisites have...
This undergraduate textbook introduces students of science and engineering to the fascinating field of optimization. It is a unique book that bring...
Mathematics is playing an ever more important role in the physical and biol- ical sciences, provoking a blurring of boundaries between scienti?c disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and tea- ing, has led to the establishment of the series Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and...
Mathematics is playing an ever more important role in the physical and biol- ical sciences, provoking a blurring of boundaries between scienti?c disci...
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas- sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems,...
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disc...
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in re- search and teaching, has led to the establishment of the series Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numeri- cal and symbolic computer systems, dynamical...
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disc...
This book is an introduction to the principles and practice of mathematical modeling in the biological sciences, concentrating on applications in population biology, epidemiology, and resource management. The core of the book covers models in these areas and the mathematics useful in analyzing them, including case studies representing real-life situations. The emphasis throughout is on describing the mathematical results and showing students how to apply them to biological problems while highlighting some modeling strategies. A large number and variety of examples, exercises, and projects are...
This book is an introduction to the principles and practice of mathematical modeling in the biological sciences, concentrating on applications in popu...
Research in robust control theory has been one of the most active areas of mainstream systems theory since the late 70s. This research activity has been at the confluence of dynamical systems theory, functional analysis, matrix analysis, numerical methods, complexity theory, and engineering applications. The discipline has involved interactions between diverse research groups including pure mathematicians, applied mathematicians, computer scientists and engineers. This research effort has produced a rather extensive set of approaches using a wide variety of mathematical techniques, and...
Research in robust control theory has been one of the most active areas of mainstream systems theory since the late 70s. This research activity has be...
Diffusion and growth phenomena abound in the real world surrounding us. Someexamples: growth of the world's population, growth rates of humans, public interest in news events, growth and decline of central city populations, pollution of rivers, adoption of agricultural innovations, and spreading of epidemics and migration of insects. These and numerous other phenomena are illustrations of typical growth and diffusion problems confronted in many branches of the physical, biological and social sciences as well as in various areas of agriculture, business, education, engineering medicine and...
Diffusion and growth phenomena abound in the real world surrounding us. Someexamples: growth of the world's population, growth rates of humans, public...