This thesis, encompassing both theory to experiment, guides the reader in a pedagogical way through the author’s attempts to resolve the mystery of the so-called MiniBooNE anomaly, where unexpected neutrino oscillations were reported, potentially explainable by the existence of light sterile neutrinos, but in contradiction with several null results. Within this context, this thesis reports one of the first analyses searching for an excess of electrons in the MicroBooNE experiment finding no excess of events and narrowing down the possible explanations for the anomaly. Additionally, this...
This thesis, encompassing both theory to experiment, guides the reader in a pedagogical way through the author’s attempts to resolve the mystery ...
This thesis highlights research explorations in quantum contextuality with photons.
Quantum contextuality is one of the most intriguing and peculiar predictions of quantum mechanics. It is also a cornerstone in modern quantum information science. It is the origin of the famous quantum nonlocality and various nonclassical paradoxes. It is also a resource for many quantum information processing tasks and even universal quantum computing. Therefore, the study of quantum contextuality not only advances the comprehension of the foundations of quantum physics, but also facilitates the...
This thesis highlights research explorations in quantum contextuality with photons.
Quantum contextuality is one of the most intriguing and p...
This thesis makes significant advances in the use of microspheres in optical traps as highly precise sensing platforms. While optically trapped microspheres have recently proven their dominance in aqueous and vacuum environments, achieving state-of-the-art measurements of miniscule forces and torques, their sensitivity to perturbations in air has remained relatively unexplored. This thesis shows that, by uniquely operating in air and measuring its thermally-fluctuating instantaneous velocity, an optically trapped microsphere is an ultra-sensitive probe of both mass and sound. The mass of...
This thesis makes significant advances in the use of microspheres in optical traps as highly precise sensing platforms. While optically trapped mi...
This book presents innovative laser desorption ionization (LDI)-active nanophotonic structures for addressing the challenges that matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is currently facing and for enhancing LDI efficiency. It presents a variety of cutting-edge nanophotonic structures to satisfy the mass-analytical needs of sensitivity, reproducibility, and quantification. As opposed to the commercialized, conventional organic matrix used in MALDI-MS, these nanostructures are validated to be highly effective in detecting small metabolites and drugs,...
This book presents innovative laser desorption ionization (LDI)-active nanophotonic structures for addressing the challenges that matrix-assisted lase...
This thesis proposes useful tools, on-the-fly trajectory mapping method and Reaction Space Projector (ReSPer), to analyze chemical reaction mechanisms by combining the reaction route map and the ab initio molecular dynamics. The key concept for the proposed tools is the Cartesian distance between pairwise molecular structures, and a practical procedure to get the optimal distance is introduced. The on-the-fly trajectory mapping method tracks the distance function between reference structures and molecular structures along the trajectory. Although this method provides fruitful insight into...
This thesis proposes useful tools, on-the-fly trajectory mapping method and Reaction Space Projector (ReSPer), to analyze chemical reaction mechanisms...
This book deals with efficient estimation and optimization methods to improve the design of electrotechnical devices under uncertainty. Uncertainties caused by manufacturing imperfections, natural material variations, or unpredictable environmental influences, may lead, in turn, to deviations in operation. This book describes two novel methods for yield (or failure probability) estimation. Both are hybrid methods that combine the accuracy of Monte Carlo with the efficiency of surrogate models. The SC-Hybrid approach uses stochastic collocation and adjoint error indicators. The...
This book deals with efficient estimation and optimization methods to improve the design of electrotechnical devices under uncertainty. Uncert...
This book reports on a set of advances relating to nonlinear observer design, with a special emphasis on high-gain observers. First, it covers the design of filters and their addition to the observer for reducing noise, a topic that has been so far neglected in the literature. Further, it describes the adaptive re-design of nonlinear observers to reduce the effect of parametric uncertainty. It discusses several limitations of classical methods, presenting a set of successfull solutions, which are mathematically formalised through Lyapunov stability analysis, and in turn validated via...
This book reports on a set of advances relating to nonlinear observer design, with a special emphasis on high-gain observers. First, it covers the des...
This book focuses on the development of novel functionalized organoboron compounds and those synthetic methods. High degrees of chemo-, regio-, and stereoselectivities of the borylation reactions are attained through catalyst design and optimization. Furthermore, the selectivity-determining mechanisms are analyzed with state-of-the-art DFT and other computational methods.
In this book, the author synthesizes some multi-substituted alkenyl and allylic boronates via borylation reactions using a copper(I)/diboron catalyst system. Those compounds contain novel densely substituted and...
This book focuses on the development of novel functionalized organoboron compounds and those synthetic methods. High degrees of chemo-, regio-, and...
Precision measurements of the Higgs boson’s properties are a powerful tool to look for deviations from the predictions of the Standard Model (SM) of particle physics. The 139/fb of proton-proton collision data which have been collected by the ATLAS experiment during Run 2 of the LHC, offer an opportunity to investigate rare Higgs-boson topologies, which are particularly sensitive to new physics scenarios but experimentally difficult to access. Several such measurements, which target Higgs-boson decays to heavy-flavour quarks, as well as their combinations are presented in this thesis. A...
Precision measurements of the Higgs boson’s properties are a powerful tool to look for deviations from the predictions of the Standard Model (SM) of...
This thesis presents the first realization of non-reciprocal energy transfer between two cantilevers by quantum vacuum fluctuations. According to quantum mechanics, vacuum is not empty but full of fluctuations due to zero-point energy. Such quantum vacuum fluctuations can lead to an attractive force between two neutral plates in vacuum – the so-called Casimir effect – which has attracted great attention as macroscopic evidence of quantum electromagnetic fluctuations, and can dominate the interaction between neutral surfaces at small separations. The first experimental demonstration of...
This thesis presents the first realization of non-reciprocal energy transfer between two cantilevers by quantum vacuum fluctuations. According to q...