The absence of new physics at the TeV scale observed thus far at the Large Hadron Collider (LHC) motivates an increasing focus on searches for weakly-coupled new particles and exotic signatures. In particular, particles with macroscopic mean proper lifetimes, known as long-lived particles (LLPs), are of significant interest due to their ability to elude the majority of searches which rely on the assumption that Beyond Standard Model particles decay close to the primary interaction point. Many models which aim to solve various issues with the Standard Model (SM) introduce new particles with...
The absence of new physics at the TeV scale observed thus far at the Large Hadron Collider (LHC) motivates an increasing focus on searches for weakly-...
This book describes the application of novel signal processing algorithms to improve the diagnostic capability of the blood oxygen saturation signal (SpO2) from nocturnal oximetry in the simplification of pediatric obstructive sleep apnea (OSA) diagnosis. For this purpose, 3196 SpO2 recordings from three different databases were analyzed using feature-engineering and deep-learning methodologies. Particularly, three novel feature extraction algorithms (bispectrum, wavelet, and detrended fluctuation analysis), as well as a novel deep-learning architecture...
This book describes the application of novel signal processing algorithms to improve the diagnostic capability of the blood oxygen saturation ...
This thesis describes the development of iron-catalyzed thienyl C–H/C–H coupling. This is applied to the synthesis of highly conjugated and electron-rich thiophene compounds of interest in materials science by utilization of low redox potential of iron in combination with a mild oxalate oxidant.
Transition-metal-catalyzed C(sp2)–H/C(sp2)–H coupling has attracted much attention as one of the most straightforward methods to construct C(sp2)–C(sp2) bonds. However, application of this ideal transformation to the synthesis of redox-sensitive pi-materials was hindered by the...
This thesis describes the development of iron-catalyzed thienyl C–H/C–H coupling. This is applied to the synthesis of highly conjugated and electr...
This book deals with efficient estimation and optimization methods to improve the design of electrotechnical devices under uncertainty. Uncertainties caused by manufacturing imperfections, natural material variations, or unpredictable environmental influences, may lead, in turn, to deviations in operation. This book describes two novel methods for yield (or failure probability) estimation. Both are hybrid methods that combine the accuracy of Monte Carlo with the efficiency of surrogate models. The SC-Hybrid approach uses stochastic collocation and adjoint error indicators. The...
This book deals with efficient estimation and optimization methods to improve the design of electrotechnical devices under uncertainty. Uncert...
Experimental particle physics is a science of many scales. A large number of physical processes spanning energies from meV to TeV must be understood for modern collider experiments to be designed, built, and conducted successfully. This thesis contributes to the understanding of phenomena across this entire dynamic range. The first half of this document studies aspects of low-energy physics that govern the operation of particle detectors, limit their performance, and guide the development of novel instrumentation. To formalise these aspects, classical electrodynamics is used to derive a...
Experimental particle physics is a science of many scales. A large number of physical processes spanning energies from meV to TeV must be understood f...
This book reports on a set of advances relating to nonlinear observer design, with a special emphasis on high-gain observers. First, it covers the design of filters and their addition to the observer for reducing noise, a topic that has been so far neglected in the literature. Further, it describes the adaptive re-design of nonlinear observers to reduce the effect of parametric uncertainty. It discusses several limitations of classical methods, presenting a set of successfull solutions, which are mathematically formalised through Lyapunov stability analysis, and in turn validated via...
This book reports on a set of advances relating to nonlinear observer design, with a special emphasis on high-gain observers. First, it covers the des...
This thesis highlights research explorations in quantum contextuality with photons.
Quantum contextuality is one of the most intriguing and peculiar predictions of quantum mechanics. It is also a cornerstone in modern quantum information science. It is the origin of the famous quantum nonlocality and various nonclassical paradoxes. It is also a resource for many quantum information processing tasks and even universal quantum computing. Therefore, the study of quantum contextuality not only advances the comprehension of the foundations of quantum physics, but also facilitates the...
This thesis highlights research explorations in quantum contextuality with photons.
Quantum contextuality is one of the most intriguing and p...
This book presents innovative laser desorption ionization (LDI)-active nanophotonic structures for addressing the challenges that matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is currently facing and for enhancing LDI efficiency. It presents a variety of cutting-edge nanophotonic structures to satisfy the mass-analytical needs of sensitivity, reproducibility, and quantification. As opposed to the commercialized, conventional organic matrix used in MALDI-MS, these nanostructures are validated to be highly effective in detecting small metabolites and drugs,...
This book presents innovative laser desorption ionization (LDI)-active nanophotonic structures for addressing the challenges that matrix-assisted lase...
This Ph.D. book develops nanowire-assisted electroporation disinfection technology based on the flow-through porous electrode. The author presents pioneering results on theoretical modeling, experimental realization, and selected applications, showing the novel disinfection mechanism of electroporation guarantees an exceedingly low level of energy consumption. In this regard, three classes of novel dynamic behavior are investigated: (i) The developed nanowire-assisted flow-through electroporation disinfection technology enables great microbial disinfection performance with...
This Ph.D. book develops nanowire-assisted electroporation disinfection technology based on the flow-through porous electrode. The ...
This book provides a comprehensive analysis of quantum-confined semiconductor lasers, focusing on quantum dot lasers (QDLs) and interband quantum cascade lasers (ICLs). Through theoretical and numerical exploration, the author scrutinizes the amplitude and frequency noise spectra, studies the dynamics induced by delayed optical reinjection, and investigates the generation of squeezed states for both laser types. Notably, his predictions align with experimental results, demonstrating the robustness of this approach. Structured meticulously, the book begins with an overview of QDL and ICL...
This book provides a comprehensive analysis of quantum-confined semiconductor lasers, focusing on quantum dot lasers (QDLs) and interband quantum c...