This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.
This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properti...
This book stresses the connection between, and the applications of, design theory to graphs and codes. Beginning with a brief introduction to design theory and the necessary background, the book also provides relevant topics for discussion from the theory of graphs and codes.
This book stresses the connection between, and the applications of, design theory to graphs and codes. Beginning with a brief introduction to design t...
The study of special cases of elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centers of research in number theory. This book, addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Wei finite basis theorem, points of finite order (Nagell-Lutz), etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to...
The study of special cases of elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centers of research in nu...
The aim of this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory leading to an elementary proof of the Lidskij trace theorem. The author assumes the reader is familiar with linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach.
The aim of this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory leading to an elementary proof of the ...
This book is a comprehensive and systematic account of the theory of p-adic and classical modular forms and the theory of the special values of arithmetic L-functions and p-adic L-functions. The approach is basically algebraic, and the treatment is elementary. No deep knowledge from algebraic geometry and representation theory is required. The author's main tool in dealing with these problems is taken from cohomology theory over Riemann surfaces, which is also explained in detail in the book. He also gives a concise but thorough treatment of analytic continuation and functional equation....
This book is a comprehensive and systematic account of the theory of p-adic and classical modular forms and the theory of the special values of arithm...
This book is a comprehensive and systematic account of the theory of p-adic and classical modular forms and the theory of the special values of arithmetic L-functions and p-adic L-functions. The approach is basically algebraic, and the treatment is elementary. No deep knowledge from algebraic geometry and representation theory is required. The author's main tool in dealing with these problems is taken from cohomology theory over Riemann surfaces, which is also explained in detail in the book. He also gives a concise but thorough treatment of analytic continuation and functional equation....
This book is a comprehensive and systematic account of the theory of p-adic and classical modular forms and the theory of the special values of arithm...
In this well-written introduction to commutative algebra, the author shows the link between commutative ring theory and algebraic geometry. In addition to standard material, the book contrasts the methods and ideology of modern abstract algebra with concrete applications in algebraic geometry and number theory. Professor Reid begins with a discussion of modules and Noetherian rings before moving on to finite extensions and the Noether normalization. Sections on the nullstellensatz and rings of fractions precede sections on primary decomposition and normal integral domains. This book is ideal...
In this well-written introduction to commutative algebra, the author shows the link between commutative ring theory and algebraic geometry. In additio...
This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. It will be valuable also to the physicist as an introduction to some of the mathematics that has proved useful in these areas, and to the mathematician as an example of where sheaf cohomology and complex manifold theory can be used in physics.
This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate lev...
This book gives a friendly introduction to Fourier analysis on finite groups, both commutative and noncommutative. Aimed at students in mathematics, engineering and the physical sciences, it examines the theory of finite groups in a manner both accessible to the beginner and suitable for graduate research. With applications in chemistry, error-correcting codes, data analysis, graph theory, number theory and probability, the book presents a concrete approach to abstract group theory through applied examples, pictures and computer experiments. The author divides the book into two parts. In the...
This book gives a friendly introduction to Fourier analysis on finite groups, both commutative and noncommutative. Aimed at students in mathematics, e...
Ransford provides an introduction to the subject, concentrating on the important case of two dimensions, and emphasizing its links with complex analysis. This is reflected in the large number of applications, which include Picard's theorem, the Phragmen-Lindelof principle, the Rado-Stout theorem, Lindelof's theory of asymptotic values, the Riemann mapping theorem (including continuity at the boundary), the Koebe one-quarter theorem, Hilbert's lemniscate theorem, and the sharp quantitative form of Runge's theorem. In addition, there is a chapter on connections with functional analysis and...
Ransford provides an introduction to the subject, concentrating on the important case of two dimensions, and emphasizing its links with complex analys...