The purpose of this monograph is to offer an accessible and essentially self-contained presentation of some mathematical aspects of the Feynman path integral in non-relativistic quantum mechanics. In spite of the primary role in the advancement of modern theoretical physics and the wide range of applications, path integrals are still a source of challenging problem for mathematicians. From this viewpoint, path integrals can be roughly described in terms of approximation formulas for an operator (usually the propagator of a Schrödinger-type evolution equation) involving a suitably designed...
The purpose of this monograph is to offer an accessible and essentially self-contained presentation of some mathematical aspects of the Feynman path i...
This book provides an introduction to deformation quantization and its relation to quantum field theory, with a focus on the constructions of Kontsevich and Cattaneo & Felder. This subject originated from an attempt to understand the mathematical structure when passing from a commutative classical algebra of observables to a non-commutative quantum algebra of observables. Developing deformation quantization as a semi-classical limit of the expectation value for a certain observable with respect to a special sigma model, the book carefully describes the relationship between the...
This book provides an introduction to deformation quantization and its relation to quantum field theory, with a focus on the constructions of Kon...
This book provides the foundations for geometric applications of convex cones and presents selected examples from a wide range of topics, including polytope theory, stochastic geometry, and Brunn–Minkowski theory. Giving an introduction to convex cones, it describes their most important geometric functionals, such as conic intrinsic volumes and Grassmann angles, and develops general versions of the relevant formulas, namely the Steiner formula and kinematic formula.
In recent years questions related to convex cones have arisen in applied mathematics, involving, for example,...
This book provides the foundations for geometric applications of convex cones and presents selected examples from a wide range of topics, including...
This monograph uncovers the full capabilities of the Riemann integral. Setting aside all notions from Lebesgue’s theory, the author embarks on an exploration rooted in Riemann’s original viewpoint. On this journey, we encounter new results, numerous historical vignettes, and discover a particular handiness for computations and applications.
This approach rests on three basic observations. First, a Riemann integrability criterion in terms of oscillations, which is a quantitative formulation of the fact that Riemann integrable functions are continuous a.e. with respect to the...
This monograph uncovers the full capabilities of the Riemann integral. Setting aside all notions from Lebesgue’s theory, the author embarks on an...
This book develops tools to handle C*-algebras arising as completions of convolution algebras of sections of line bundles over possibly non-Hausdorff groupoids. A fundamental result of Gelfand describes commutative C*-algebras as continuous functions on locally compact Hausdorff spaces. Kumjian, and later Renault, showed that Gelfand's result can be extended to include non-commutative C*-algebras containing a commutative C*-algebra. In their setting, the C*-algebras in question may be described as the completion of convolution algebras of functions on twisted Hausdorff groupoids with...
This book develops tools to handle C*-algebras arising as completions of convolution algebras of sections of line bundles over possibly non-Hausdorff ...
This book focuses on the study of the volume of vector fields on Riemannian manifolds. Providing a thorough overview of research on vector fields defining minimal submanifolds, and on the existence and characterization of volume minimizers, it includes proofs of the most significant results obtained since the subject’s introduction in 1986. Aiming to inspire further research, it also highlights a selection of intriguing open problems, and exhibits some previously unpublished results. The presentation is direct and deviates substantially from the usual approaches found in the...
This book focuses on the study of the volume of vector fields on Riemannian manifolds. Providing a thorough overview of research on vector fields defi...
The topological fundamental group of a smooth complex algebraic variety is poorly understood. One way to approach it is to consider its complex linear representations modulo conjugation, that is, its complex local systems. A fundamental problem is then to single out the complex points of such moduli spaces which correspond to geometric systems, and more generally to identify geometric subloci of the moduli space of local systems with special arithmetic properties. Deep conjectures have been made in relation to these problems. This book studies some consequences of these conjectures, notably...
The topological fundamental group of a smooth complex algebraic variety is poorly understood. One way to approach it is to consider its complex linear...
This book studies the potential functions of one-dimensional recurrent random walks on the lattice of integers with step distribution of infinite variance. The central focus is on obtaining reasonably nice estimates of the potential function. These estimates are then applied to various situations, yielding precise asymptotic results on, among other things, hitting probabilities of finite sets, overshoot distributions, Green functions on long finite intervals and the half-line, and absorption probabilities of two-sided exit problems.
The potential function of a random walk is a...
This book studies the potential functions of one-dimensional recurrent random walks on the lattice of integers with step distribution of infinite v...
The present book develops the mathematical and numerical analysis of linear, elliptic and parabolic partial differential equations (PDEs) with coefficients whose logarithms are modelled as Gaussian random fields (GRFs), in polygonal and polyhedral physical domains. Both, forward and Bayesian inverse PDE problems subject to GRF priors are considered.
Adopting a pathwise, affine-parametric representation of the GRFs, turns the random PDEs into equivalent, countably-parametric, deterministic PDEs, with nonuniform ellipticity constants. A detailed sparsity analysis of...
The present book develops the mathematical and numerical analysis of linear, elliptic and parabolic partial differential equations (PDEs) with coeffic...