Stochastic analysis is not only a thriving area of pure mathematics with intriguing connections to partial differential equations and differential geometry. This book proposes to solve the dilemma: by adopting E. Nelson's "radically elementary" theory of continuous-time stochastic processes.
Stochastic analysis is not only a thriving area of pure mathematics with intriguing connections to partial differential equations and differential geo...
Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an involved reduction theory due to Harder, by imposing the restrictions that the group is split and that S has only two places, one can instead make use of the theory of twin buildings.
Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic ...
This book provides an introduction to geometric invariant theory from a differential geometric viewpoint. It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different areas of geometry. The central ingredients are the moment-weight inequality relating the Mumford numerical invariants to the norm of the moment map, the negative gradient flow of the moment map squared, and the Kempf--Ness function. The exposition is essentially self-contained, except for an appeal to the Lojasiewicz gradient inequality. A broad...
This book provides an introduction to geometric invariant theory from a differential geometric viewpoint. It is inspired by certain infinit...
This book on recent research in noncommutative harmonic analysis treats the Lp boundedness of Riesz transforms associated with Markovian semigroups of either Fourier multipliers on non-abelian groups or Schur multipliers. The detailed study of these objects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge–Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative...
This book on recent research in noncommutative harmonic analysis treats the Lp boundedness of Riesz transforms associated with ...
The present monograph further develops the study, via the techniques of combinatorial anabelian geometry, of the profinite fundamental groups of configuration spaces associated to hyperbolic curves over algebraically closed fields of characteristic zero.
The starting point of the theory of the present monograph is a combinatorial anabelian result which allows one to reduce issues concerning the anabelian geometry of configuration spaces to issues concerning the anabelian geometry of hyperbolic curves, as well as to give purely...
The present monograph further develops the study, via the techniques of combinatorial anabelian geometry, of the profinite fundamental groups of ...
This book provides an introduction to recent developments in the theory of generalized harmonic analysis and its applications. It is well known that convolutions, differential operators and diffusion processes are interconnected: the ordinary convolution commutes with the Laplacian, and the law of Brownian motion has a convolution semigroup property with respect to the ordinary convolution. Seeking to generalize this useful connection, and also motivated by its probabilistic applications, the book focuses on the following question: given a diffusion...
This book provides an introduction to recent developments in the theory of generalized harmonic analysis and its applications. It is well known tha...
This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory’s most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains...
This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds.&nb...
This book gives a proof of Cherlin’s conjecture for finite binary primitive permutation groups. Motivated by the part of model theory concerned with Lachlan’s theory of finite homogeneous relational structures, this conjecture proposes a classification of those finite primitive permutation groups that have relational complexity equal to 2.
The first part gives a full introduction to Cherlin’s conjecture, including all the key ideas that have been used in the literature to prove some of its special cases. The second part completes the proof...
This book gives a proof of Cherlin’s conjecture for finite binary primitive permutation groups. Motivated by the part of model theory conc...