A two-part volume containing a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications, and a detailed review of recent investigations concerning the function-theoretical pecularities of polyanalytic functions (boundary behaviour, value distributions, degeneration, uniqueness etc).
A two-part volume containing a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applicat...
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second...
This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less "significant" subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a...
This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra j...
Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of...
Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have di...
This EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. This book will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry.
This EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. Thi...
This book is devoted to the development of geometrie methods for studying and revealing geometrie aspects of the theory of differential equations with quadratie right-hand sides (Riccati-type equations), which are closely related to the calculus of variations and optimal control theory. The book contains the following three parts, to each of which aseparate book could be devoted: 1. the classieal calculus of variations and the geometrie theory of the Riccati equation (Chaps. 1-5), 2. complex Riccati equations as flows on Cartan-Siegel homogeneity da mains (Chap. 6), and 3. the minimization...
This book is devoted to the development of geometrie methods for studying and revealing geometrie aspects of the theory of differential equations with...
Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some key laws of statistical physics can also be tested or even established by mathematically rigorous tools. The mathematical methods are most beautiful but sometimes quite involved. This collection of surveys written by leading researchers of the fields - mathematicians, physicists or mathematical physicists - treat both mathematically rigourous results, and evolving physical theories where the methods are analytic or computational. Some basic...
Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some k...
A systematic survey of all the basic results on the theory of discrete subgroups of Lie groups, presented in a convenient form for users. The book makes the theory accessible to a wide audience, and will be a standard reference for many years to come.
A systematic survey of all the basic results on the theory of discrete subgroups of Lie groups, presented in a convenient form for users. The book ...
In the Part at hand the authors undertake to give a presentation of the historical development of the theory of imbedding of function spaces, of the internal as well as the externals motives which have stimulated it, and of the current state of art in the field, in particular, what regards the methods employed today. The impossibility to cover all the enormous material connected with these questions inevitably forced on us the necessity to restrict ourselves to a limited circle of ideas which are both fundamental and of principal interest. Of course, such a choice had to some extent have a...
In the Part at hand the authors undertake to give a presentation of the historical development of the theory of imbedding of function spaces, of the i...
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerations such as differential invariants and jets as well as global ideas, such as Morse theory and characteristic classes. In this volume of the Encyclopaedia, the authors give a tour of the principal areas and methods of modern differential geomerty. The book is structured so that the reader may choose parts of the text to read and still take away a completed picture of some area of differential geometry. Beginning at the introductory level...
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerati...