From the reviews: "This volume... consists of two papers. The first, written by V.V. Shokurov, is devoted to the theory of Riemann surfaces and algebraic curves. It is an excellent overview of the theory of relations between Riemann surfaces and their models - complex algebraic curves in complex projective spaces. ... The second paper, written by V.I. Danilov, discusses algebraic varieties and schemes. ... I can recommend the book as a very good introduction to the basic algebraic geometry." European Mathematical SocietyNewsletter, 1996 ..". To sum up, this book helps to...
From the reviews: "This volume... consists of two papers. The first, written by V.V. Shokurov, is devoted to the theory of Riemann surfaces and algebr...
From the reviews: ..". They (Gabriel and Roiter) are pioneers in this subject and they have included proofs for statements which in their opinions are elementary, those which will help further understanding and those which are scarcely available elsewhere. They attempt to take us up to the point where we can find our way in the original literature. ..." The Mathematical Gazette, 1993 ..". The standard of this text is high and will be definitely appreciated by the algebraic community." Monatshefte Mathematik, 1994 .."This book is...
From the reviews: ..". They (Gabriel and Roiter) are pioneers in this subject and they have included proofs for statements which in their ...
From the reviews: ..". The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail....
From the reviews: ..". The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a w...
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are...
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homolog...
Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is...
Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Eul...
The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative...
The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of vari...
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second...
This EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. This book will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry.
This EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. Thi...
Group theory is one of the most fundamental branches of mathematics. This volume of the Encyclopaedia is devoted to two important subjects within group theory. The first part of the book is concerned with infinite groups. The authors deal with combinatorial group theory, free constructions through group actions on trees, algorithmic problems, periodic groups and the Burnside problem, and the structure theory for Abelian, soluble and nilpotent groups. They have included the very latest developments; however, the material is accessible to readers familiar with the basic concepts of algebra. The...
Group theory is one of the most fundamental branches of mathematics. This volume of the Encyclopaedia is devoted to two important subjects within grou...
This book was written over a period of more than six years. Several months after we finished our work, N.1. Fel'dman (the senior author of the book) died. All additions and corrections entered after his death were made by his coauthor. The assistance of many of our colleagues was invaluable during the writing of the book. They examined parts of the manuscript and suggested many improvements, made useful comments and corrected many errors. I much have pleasure in acknowledging our great indebtedness to them. Special thanks are due to A. B. Shidlovskii, V. G. Chirskii, A.1. Galochkin and O. N....
This book was written over a period of more than six years. Several months after we finished our work, N.1. Fel'dman (the senior author of the book) d...