Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far..
Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori.
Throughout the text,...
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage...
This solid volume discusses all the key topics in detail, including classification, orbit structure, representations, universal constructions, and abstract analogues. Open problems are discussed as they arise and many useful exercises are included.
This solid volume discusses all the key topics in detail, including classification, orbit structure, representations, universal constructions, and ...
Part I of this book is a short review of the classical part of representation theory. The main chapters of representation theory are discussed: representations of finite and compact groups, finite- and infinite-dimensional representations of Lie groups. It is a typical feature of this survey that the structure of the theory is carefully exposed - the reader can easily see the essence of the theory without being overwhelmed by details. The final chapter is devoted to the method of orbits for different types of groups. Part II deals with representation of Virasoro and Kac-Moody algebra. The...
Part I of this book is a short review of the classical part of representation theory. The main chapters of representation theory are discussed: repres...
From the reviews: .."., the book must be of great help for a researcher who already has some idea of Lie theory, wants to employ it in his everyday research and/or teaching, and needs a source for customary reference on the subject. From my viewpoint, the volume is perfectly fit to serve as such a source, ... On the whole, it is quite a pleasure, after making yourself comfortable in that favourite office armchair of yours, just to keep the volume gently in your hands and browse it slowly and thoughtfully; and after all, what more on Earth can one expect of any book?" The...
From the reviews: .."., the book must be of great help for a researcher who already has some idea of Lie theory, wants to employ it in his...
From the reviews: "The reading is very easy and pleasant for the non-mathematician, which is really noteworthy. The two chapters enunciate the basic principles of the field, ... indicate connections with other fields of mathematics and sketch the motivation behind the various concepts which are introduced.... What is particularly pleasant is the fact that the authors are quite successful in giving to the reader the feeling behind the demonstrations which are sketched. Another point to notice is the existence of an annotated extended bibliography and a very complete index. This really...
From the reviews: "The reading is very easy and pleasant for the non-mathematician, which is really noteworthy. The two chapters enunciate the ...
With the groundwork laid in the first volume (EMS 15) of the Commutative Harmonic Analysis subseries of the Encyclopaedia, the present volume takes up four advanced topics in the subject: Littlewood-Paley theory for singular integrals, exceptional sets, multiple Fourier series and multiple Fourier integrals.
With the groundwork laid in the first volume (EMS 15) of the Commutative Harmonic Analysis subseries of the Encyclopaedia, the present volume takes...
In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic...
In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broa...
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are...
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homolog...
The first part of this volume is a survey of the current state of the theory of linear integral equations. Material from abstract operator theory is presented first, before moving on to a detailed discussion of Fredholm operators and estimates for the eigenvalues and singular numbers of integral operators. Other sections of this part are devoted to the theories of one-, and higher-dimensional singular operators. The second part of the volume concentrates on theoretical aspects of the boundary integral equation method, with particular emphasis on the results for equations on non-smooth...
The first part of this volume is a survey of the current state of the theory of linear integral equations. Material from abstract operator theory is p...
Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy problem, and its attendant question of well-posedness (or correctness). The authors address this question in the context of PDEs with constant coefficients and more general convolution equations in the first two chapters. The third chapter extends a number of these results to equations with variable coefficients. The second topic is the qualitative theory of second order linear PDEs, in particular, elliptic and parabolic equations. Thus, the second...
Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy pro...