1 Fundamentals of Dielectrics 1.1 Dielectrics1.1.1 Polarization of Dielectrics1.1.2 Dispersion of Dielectric Polarization1.1.2.1 Electronic Polarization1.1.2.2 Ionic Polarization1.1.2.3 Orientation Polarization1.1.2.4 Space Charge Polarization1.1.3 Dielectric relaxation1.1.4 Debye relaxation1.1.5 Molecular Theory of Induced Charges in a Dielectric1.1.6: Capacitance of a Parallel Plate Capacitor1.1.7 Electric displacement field, Dielectric constant, and Electric susceptibility1.1.8 Local Field in a Dielectric1.1.8.1 Lorentz field, E21.1.8.2 Field of dipoles inside cavity, E3 1.1.9 Dielectrics Losses1.1.9.1 Dielectric Loss Angle1.1.9.2 Total and Specific Dielectric Losses1.1.10: Dielectrics Breakdown2 Pyroelectricity 2.1 Introduction2.2 History of pyroelectricity2.3 Theory of Pyroelectricity2.4 Simple model of pyroelectric effect2.5 Pyroelectric crystal symmetry 2.6 Piezoelectricity2.7 Ferroelectricity2.7.1 Ferroelectric Phase Transitions 2.7.2 Ferroelectric Domains2.7.3 Ferroelectric Domain Wall Motion2.7.4 Soft mode3 Pyroelectric materials and Applications3.1 Introduction3.2 Theory of Pyroelectric Detectors3.3 Material Figure-of-Merits3.4 Classification of pyroelectric materials3.4.1 Single crystals3.4.1.1 Triglycine sulphate (TGS) 3.4.1.2 Lithium tantalate (LT) and Lithium niobate (LN)3.4.1.3 Barium strontium titanate (BST)3.4.1.4 Strontium barium niobite (SBN) 3.4.2 Perovskite Ceramics 3.4.2.1 Modified lead zirconate (PZ)3.4.2.2 Modified lead titanate (PT)3.4.3 Polymers3.4.4 Ceramic-polymer composites3.4.5 Lead-free ceramics3.4.6 Other pyroelectric materials3.4.6.1 Aluminium nitride (AlN)3.4.6.2 Gallium nitride (GaN)3.4.6.3 Zinc oxide (ZnO) 4 Pyroelectric Infrared Detectors 4.1 Introduction4.2 Device configurations 4.2.1 Thick film detectors4.2.2 Thin film detectors4.2.3 Hybrid focal plane array detector4.2.4 Linear array detector 4.2.5 Periodic domain TFLTTM detector 4.2.6 Terahertz thermal detector4.2.7 PVDF polymer detector 4.2.8 TFP polymer detector4.2.9 TADPh polymer detector4.2.10 Integrated resonant absorber pyroelectric detector4.2.11 Resonant IR detector4.2.12: Plasmonic IR detector 4.2.13: Graphene pyroelectric bolometer5 Pyroelectric Energy Harvesting5.1 Introduction5.2 Theory of Pyroelectric Energy harvesting5.3 Pyroelectricity in Ferroelectric Materials5.3.1 Thermodynamic Cycles of PyEH5.3.1 (a) Carnot Cycle5.3.1 (b) Ericsson Cycle5.3.1 (c) Olsen Cycle5.4 Pyroelectric Generators5.5 Pyroelectric Nanogenerators5.5.1 Polymer Based Pyroelectric Nanogenerators5.5.1.1 PyNGs Driven by Various Environmental Conditions5.5.1.2 Development of Pyroelectric Materials5.5.1.3 Wearable Pyroelectric Nanogenerators 5.5.1.4 Hybrid Pyroelectric Nanogenerators 5.5.2 Ceramic Based Pyroelectric Nanogenerators5.5.2.1 ZnO based pyroelectric Nanogenerators5.5.2.2 PZT based pyroelectric Nanogenerators5.5.2.3 Lead-free Ceramic based pyroelectric Nanogenerators5.5.3 Thermal nanophotonic- pyroelectric nanogenerator5.5.4 Challenges and Perspectives of Pyroelectric nanogenerators6 Pyroelectric fusion6.1 Introduction6.2 History of Pyroelectric Fusion6.3 Pyroelectric neutron generators6.4 Pyroelectric X-ray generators
Ashim Kumar Bain, PhD, is a Former Research Fellow at the School of Electronic, Electrical and System Engineering, University of Birmingham, UK. Dr. Ashim Kumar Bain received his M.Sc. (Physics) degree in 1989 from Rajshahi University, Bangladesh, and his Ph.D. (Materials Science) degree from Dniepropetrovsk State University, Ukraine, in 1994. He was a postdoctoral research fellow (1995-1998) at the Indian Institute of Technology Kanpur, India.Prem Chand, PhD, is Professor at the Department of Physics, Indian Institute of Technology Kanpur, India. He has authored more than hundred scientific publications several review articles and two invited book chapters on ferroelectrics.