ISBN-13: 9781789450132 / Angielski / Twarda / 2021 / 384 str.
ISBN-13: 9781789450132 / Angielski / Twarda / 2021 / 384 str.
Introduction xiLaure MONCONDUIT and Laurence CROGUENNECChapter 1. Layered NaMO2 for the Positive Electrode 1Shinichi KOMABA and Kei KUBOTA1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009 11.2. Crystal structures of layered materials 41.2.1. Crystal structures of synthesizable NaxMO2 41.2.2. Structural changes of O3-NaMO2 by Na extraction 71.2.3. Structural changes of P2-NaxMO2 by Na extraction 91.3. O3-type layered materials 101.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 101.3.2. O3-Na[M,M']O2 (M, M' = transition metals) 191.3.3. Moist air stability of O3-NaMO2 and surface coating 241.4. P2-type layered materials 261.4.1. Practical issues of P2-type materials for Na-ion batteries 261.4.2. P2-Na2/3[Mn,Co,M]O2 281.4.3. P2-Na2/3[Mn,Fe,M]O2 291.4.4. P2-Na2/3[Ni,Mn,M]O2 301.5. Summary and prospects 321.6. Acknowledgments 331.7. References 33Chapter 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries 47Long H. B. NGUYEN, Fan CHEN, Christian MASQUELIER and Laurence CROGUENNEC2.1. Introduction 472.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries 472.1.2. NASICONs and Na3V2(PO4)2F3 502.2. NASICON structures as model frameworks in sodium-ion battery applications 532.2.1. Compositional diversity from solid electrolytes to electrodes 532.2.2. NASICON-typed materials as electrodes for Na batteries 552.2.3. Na3V2(PO4)3 (NVP) 582.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications 692.3.1. Structural description and compositional diversity 692.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs 722.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases 752.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance 802.4. Conclusion and perspectives 862.5. References 87Chapter 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism 101Carolina DEL MAR SAAVEDRA RIOS, Adrian BEDA, Loic SIMONIN and Camélia MATEI GHIMBEU3.1. Introduction 1013.2. What is a hard carbon? 1033.3. Hard carbon synthesis and microstructure 1053.3.1. Synthetic precursors-based hard carbon synthesis 1073.3.2. Bio-polymers derived hard carbon synthesis 1103.3.3. Biomass-based hard carbon synthesis 1123.4. Hard carbon characteristics 1163.4.1. Hard carbon structure 1163.4.2. Hard carbon porosity 1183.4.3. Hard carbon surface chemistry 1213.4.4. Hard carbon structural defects 1243.5. Electrochemical performance 1263.5.1. Materials performance 1263.5.2. Full Na-ion system performance 1313.5.3. Sodium insertion mechanisms in hard carbon 1323.6. Conclusion 1353.7. References 136Chapter 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries 147Vincent GABAUDAN, Moulay Tahar SOUGRATI, Lorenzo STIEVANO and Laure MONCONDUIT4.1. Introduction 1474.2. Insertion materials 1494.2.1. Insertion anodes based on titanium oxide and titanates 1494.2.2. Insertion anodes based on transition metal chalcogenides 1574.2.3. Insertion MXene-based anodes 1594.2.4. Insertion organic anodes 1614.3. Negative electrode materials based on electrochemical alloying with sodium 1624.3.1. Silicon and germanium 1634.3.2. Tin 1654.3.3. Phosphorus 1664.3.4. Antimony 1704.3.5. Other post-transition metal elements 1734.4. Negative electrode materials based on conversion reactions 1744.4.1. Reaction mechanisms of CM 1774.4.2. Approaches toward efficient anode CM for NIB 1814.5. Conclusion 1854.6. References 186Chapter 5. Electrolytes for Sodium Batteries 205Faezeh MAKHLOOGHIAZAD, Cristina POZO-GONZALO, Patrik JOHANSSON and Maria FORSYTH5.1. Introduction 2055.2. Liquid and solid electrolytes for sodium batteries 2075.2.1. Organic liquid electrolytes 2085.2.2. IL-based electrolytes 2115.2.3. Hybrid electrolytes 2155.2.4. Effects of additives and impurities 2165.2.5. Solid-state electrolytes 2175.3. Properties of IL-based electrolytes for Na batteries 2235.3.1. Physical properties 2235.3.2. Thermal stability 2245.3.3. Electrochemical stability 2255.4. Modeling IL-based electrolytes 2265.5. Conclusion and future perspectives 2295.6. Abbreviations 2315.7. References 233Chapter 6. Solid Electrolyte Interphase in Na-ion batteries 243Le Anh MA, Ronnie MOGENSEN, Andrew J. NAYLOR and Reza YOUNESI6.1. Introduction 2436.1.1. The solid electrolyte interphase 2436.1.2. Characterization of the SEI 2446.2. Physical properties of the Na-ion SEI 2476.2.1. Electrochemical stability 2476.2.2. Mechanical properties 2486.2.3. Dissolution of SEI components 2496.3. Comparisons of SEI in sodium- and lithium-based electrolytes 2526.3.1. Formation and composition 2526.3.2. Resistance 2586.4. Conclusion 2616.5. References 261Chapter 7. Batteries Containing Prussian Blue Analogue Electrodes 265Colin D. WESSELLS7.1. Introduction 2657.1.1. Chapter introduction 2657.1.2. History of Prussian blue 2657.1.3. Physical characteristics: structure, composition and morphology 2667.1.4. Synthetic methods 2707.2. Electrochemistry of PBAs 2737.2.1. Mechanism and resulting characteristics 2737.2.2. Reaction potentials 2757.2.3. PBA cathodes 2787.2.4. PBA anodes 2867.3. Prussian blue batteries 2927.3.1. Cells containing two PBA electrodes 2927.3.2. Cells containing one PBA electrode 3007.3.3. Challenges for PBA batteries 3047.4. Conclusion and future outlook 3067.5. References 306Chapter 8. The Design, Performance and Commercialization of Faradion's Non-aqueous Na-ion Battery Technology 313Ashish RUDOLA, Fazlil COOWAR, Richard HEAP and Jerry BARKER8.1. Introduction 3138.2. Experimental 3158.2.1. Active materials 3158.2.2. Electrode fabrication 3188.2.3. Pouch cell fabrication 3198.2.4. Faradion electrolyte 3208.3. Cell performance 3218.3.1. Half-cell cycling 3218.3.2. Full Na-ion cell cycling: curves and stability 3228.3.3. Rate capability 3238.3.4. Temperature studies 3248.3.5. Three-electrode cell studies 3258.4. Safety and zero energy storage and transportation 3278.5. Scale-up and prototyping 3318.6. Demonstrators: stacks and packs 3328.7. Business and IP strategy 3358.8. Cost analysis 3388.9. Future developments 3388.10. Conclusion 3428.11. Acknowledgments 3438.12. References 343List of Authors 345Index 349
Laure Monconduit holds a PhD from the Institut des Materiaux Jean Rouxel and is CNRS Senior Researcher at Charles Gerhardt Institute (CNRS UMR 5253) at the University of Montpellier, France. Her current research interests include the synthesis and characterization of negative electrode materials for Li-ion, and post-Li systems (Na-, K-, Mg-ion) by operando characterization techniques.Laurence Croguennec holds a PhD from the Institut des Materiaux Jean Rouxel at Nantes University, France, and is CNRS Senior Researcher at ICMCB in Bordeaux, France. Her research is focused in the field of electrode materials for Li- and Na-ion batteries: crystal chemistry of oxides and phosphates, and the characterization of mechanisms involved upon cycling.
1997-2024 DolnySlask.com Agencja Internetowa