ISBN-13: 9781461292463 / Angielski / Miękka / 2012 / 627 str.
ISBN-13: 9781461292463 / Angielski / Miękka / 2012 / 627 str.
As stated by Buckminster Fuller in Operation Manual for Spaceship Earth, "Synergy is the behavior of whole systems unpredicted by separately observed behaviors of any of the system's separate parts." In a similar vein, one might define an intellectual synergy as "an improvement in our understanding of the behavior of a system unpredicted by separately acquired viewpoints of the activities of such a system." Such considerations underlie, and provide a motivation for, an interdisciplinary approach to the problem of unraveling the deeper mysteries of cellular metabolism and organization, and have led a number of pioneering spirits, many represen- ted in the pages which follow, to consider biological systems from an elec- trochemical standpoint. is itself, of course, an interdisciplinary branch of Now electrochemistry science, and there is no doubt that many were introduced to it via Bockris and Reddy's outstanding, wide-ranging and celebrated textbook Modern Electrochemistry. If I am to stick my neck out, and seek to define bioelec- trochemistry, I would take it to refer to "the study of the mutual interac- tions of electrical fields and biological materials, including living systems."
1. Fundamental Aspects of Electron Transfer at Interfaces.- 1. Introduction.- 2. The Chemical and Electrical Implications of Charge Transfer at Interfaces.- 3. Energy Conversion: A Basic Difference between Chemical and Electrochemical Reactions.- 4. Electrochemical Kinetics.- 4.1. The Equivalence of Current Density at an Interface and Reaction Rate.- 4.2. Two-Way Electron Transfer Across an Interface.- 4.3. The Butler—Volmer Equation: The Rate of an Electrochemical Reaction at a Given Degree of Displacement from Equilibrium.- 4.4. The Measurement of Potential in Electrochemical Reactions.- 4.5. The Electrical Control of Charge Transfer Reactions.- 4.6. Transport Control at the Interface.- 4.7. Potential—Current Relation under Transport Control.- 4.8. The General Relationship between Current and Potential at an Interface.- 5. Phenomena Connected with Tunneling at an Interface.- 5.1. The Interfacial Barrier and Its Penetration.- 5.2. Distribution of Electronic States at the Interface.- 5.3. The Effect of Surface States upon the Distribution of Potential at the Semiconductor—Solution Interface.- 5.4. Fermi Levels in the Semiconductor and in the Solution.- 6. The Current—Potential Relation at the Semiconductor—Solution Interface.- 6.1. General.- 6.2. Rate-Determining Step at the Semiconductor—Solution Interface.- 7. Insulator—Solution Interfaces.- 7.1. General.- 7.2. Double Layer at the Insulator—Solution Interface.- 7.3. The Current—Potential Relation at the Insulator—Solution Interface.- References.- 2. The Origin of Cellular Electrical Potentials.- 1. Early History.- 1.1. The Founding of Colloid Chemistry and the Membrane Theory.- 1.2. The Founding of the Membrane Theory of Cell Potentials by Bernstein.- 1.3. The Ionic Theory of Cell Potential by Hodgkin, Huxley, and Katz.- 2. The Energy Available vs. Energy Required to Operate the Na+ Pump.- 3. The Association—Induction (AI) Hypothesis.- 3.1. State of Cell K+.- 3.2. State of Cell Water.- 4. The Surface Adsorption Theory of Cell Potential—A Subsidiary Theory of the AI Hypothesis.- 4.1. The Earlier Model.- 4.2. An Improved Theory of Cellular Resting Potential Incorporating Cooperative Interaction among Surface Anionic Sites.- 4.3. The Action Potential.- Acknowledgments.- References.- 3. Electrodic Chemistry in Biology.- 1. Introduction.- 2. The Membrane Potential.- 2.1. The Four Classical Membrane Potential Treatments.- 3. The Possibilities of an Electrodic Aspect in Biology.- 4. Electrodic Electrochemistry in Biology.- 4.1. Earlier Electrodic Suggestions.- 4.2. Is Heat Generation of the Body Consistent with the Electrochemical Functioning of Cells?.- 5. Redox Electrode Kinetics at Membrane Bielectrodes.- 6. An Electrodic Model for the Membrane Potential.- 7. Application of the Goldmann Equation.- 8. Electrochemistry in Biomedical Sciences.- 9. Electrochemical Models for Biological Energy Conversion.- 10. General Considerations.- 11. Future Applications to Cancer and Arteriosclerosis.- 12. Conclusion.- Acknowledgments.- References.- 4. Elementary Analysis of Chemical Electric Field Effects in Biological Macromolecules. I. Thermodynamic Foundations.- 1. Introduction.- 2. Primary Aspects of Matter in Electric Fields.- 2.1. Electrical—Chemical Coupling.- 2.2. Elementary Chemical Processes.- 2.3. Biological and Experimental Electric Fields.- 2.4. Biopolymers.- 3. General Thermodynamic Foundations.- 3.1. General Reaction Parameters.- 3.2. General van’t Hoff Relations.- 3.3. Transition Curves.- 3.4. Chemical Affinity.- 3.5. Application Limits.- 3.6. Electrochemical Potential.- 3.7. “Dielectrochemical” Potential.- 4. Thermodynamics in Electric Fields.- 4.1. The Characteristic Gibbs Function.- 4.2. Dielectrochemical Affinity.- 4.3. Activity Coefficients.- 4.4. Van’t Hoff Relationship.- Acknowledgments.- List of Symbols.- References.- 5. Elementary Analysis of Chemical Electric Field Effects in Biological Macromolecules. II. Kinetic Aspects of Electro-Optic and Conductometric Relaxations.- 1. Introduction.- 2. Rate Constants in Electric Fields.- 2.1. Dipolar Equilibria.- 2.2. Ionic Equilibria.- 3. Reaction Moment and Electric—Chemical Mechanism.- 3.1. Reaction Moments from Dielectric Data.- 3.2. Permanent and Induced Dipole Moments.- 3.3. Reaction Moment and Equilibrium Constant.- 3.4. Reactions in Polar Media.- 3.5. Induced Dipole Moments in Polyionic Macromolecules.- 4. Measurement of Electric Field Effects.- 4.1. Chemical Relaxations.- 4.2. Indication of Concentration Changes.- 4.3. Component Contributions to Absorbance.- 4.4. Linear Dichroism.- 4.5. Chemical Transition Factor.- 4.6. Differentiation between Component Contributions.- 5. Macromolecular Cooperativity and Hysteresis.- Note Added in Proof.- Acknowledgments.- References.- 6. Some Aspects of Charge Transfer in Biological Systems.- 1. Introduction.- 2. Solitons.- 3. Conduction and Biological Structure.- 4. Hydration and Charge Transfer.- 4.1. Proteins.- 4.2. Cytochromes.- 5. Charge Transfer and Adsorption. Surface Effects.- 5.1. Introduction.- 5.2. Membranes.- 6. Proton Transfer Complexes.- Acknowledgments.- References.- 7. Ion, Electron, and Proton Transport in Membranes: A Review of the Physical Processes Involved.- 1. Introduction.- 1.1. Ions, Electrons, and Protons in Cell Membranes.- 2. Ion Transport.- 2.1. Membrane Potential.- 2.2. Dielectric Properties of Biological Water.- 2.3. Ion Pores.- 3. Electron Transport.- 3.1. Tunneling.- 3.2. Electron Delocalization.- 3.3. Electronic Induction and Displacement Effects.- 4. Proton Transport.- 4.1. Water and Ice Models.- 4.2. Other Model Systems.- 5. Concluding Remarks.- References.- 8. Coherent Excitation in Active Biological Systems.- 1. General.- 2. Coherent Excitations.- 3. Consequences.- 4. Experiments.- References.- 9. Collective Properties of Biological Systems: Solitons and Coherent Electric Waves in a Quantum Field Theoretical Approach.- 1. Introduction.- 2. Solitons, Electrets, and Fröhlich Waves.- 3. Boson Condensation and Collective Modes.- 3.1. Davydov Soliton Regime.- 3.2. Fröhlich Regime.- 4. Phenomenological Evidence.- 4.1. Solitons on Macromolecules.- 4.2. Water in Biological Systems.- 4.3. Coherent Electric Waves in Living Matter.- References.- 10. Electrostatic Modulation of Electromagnetically Induced Nonthermal Responses in Biological Membranes.- 1. Introduction.- 2. Background and Review of Theoretical Models to Explain Coupling of Electromagnetic Fields to Membranes.- 3. Cooperative Coupling between Membranes and External Fields.- 4. Role of Membrane Surface Charge in Modulating Cooperative Responses to External Stimuli.- 5. Alterations in Electrical Double Layer Structure by an External Field Coupling to the Membrane.- 6. Conclusion.- Acknowledgments.- References.- 11. Differential Energy Control and the Dielectric Structure of Cells.- 1. Introduction.- 2. Cell Transformation.- 3. Determination of Dielectric Structure of Cells by Inversion of Their Raman Spectra.- 4. Results.- 5. Discussion of Results.- References.- 12. Biological Dielectrophoresis: The Behavior of Biologically Significant Materials in Nonuniform Electric Fields.- 1. Introduction.- 2. Dielectrophoresis.- 3. Historical Perspective.- 4. Theory of Dielectrophoretic Force.- 4.1. Derivation of the General Force Equation.- 4.2. Force on a Conductive Sphere in a Conductive Fluid.- 5. Polarization, the Electrical Distortion in Matter.- 5.1. Molecular Modes.- 5.2. Supramolecular Modes (Interfacial and Interregional Polarization).- 6. Orientational Dielectrophoresis.- 7. Induced Cellular DEP.- 7.1. Experimental Considerations.- 7.2. Batch Methods.- 7.3. Continuous Methods.- 7.4. Single-Cell Levitation.- 7.5. Micro-DEP.- 8. The Use of DEP to Shape Tissue Models.- 9. Applications of Orientational Dielectrophoresis.- 10. Natural rf Oscillations in Dividing Cells.- 10.1. Introduction.- 10.2. Micro-DEP (µ-DEP) by Living Cells.- 11. Cellular Spin Resonance (CSR).- 12. Origins of the Natural rf Oscillations of Dividing Cells.- 13. DEP-Guided Pulse Fusion of Cells.- Acknowledgments.- References.- 13. Electrical Phenomena in Proteinoid Cells.- 1. Introduction.- 1.1. Proteinoid.- 1.2. Temperature.- 1.3. Prosthetic Groups.- 1.4. Hydrolyzability.- 1.5. Solubility.- 1.6. Ionic Behavior.- 1.7. History of Proteinoid Microspheres.- 1.8. History of Electrical Excitation in Evolved Cells.- 2. Physical Properties of Microspheres.- 2.1. Stability.- 3. Membrane.- 3.1. Bilayer Proteinoid Membranes.- 3.2. Spherical Proteinoid Membranes.- 3.3. Tubular Proteinoid Membranes.- 4. The Effect of Light.- 4.1. Spectral Characteristics of the Proteinoid.- 4.2. The Effect of Light Intensity on Electrical Properties.- 5. Electrical Phenomena.- 5.1. Electrical Resistance.- 5.2. Current—Voltage Dependence.- 5.3. Membrane Potential.- 5.4. Electrical Discharges and Oscillations.- 5.5. Channels.- 6. Some Electronic Properties.- 7. Potential Applications.- 8. Conclusions and Prospects.- Acknowledgments.- References.- 14. Noise in Biomolecular Systems.- 1. Introduction.- 2. Principle of Noise Spectrography.- 2.1. Basic Vocabulary.- 2.2. Noise Spectrograph Apparatus.- 3. Noise in Electrolytes and Interfaces.- 3.1. Dilute Aqueous 1.1 Electrolytes.- 3.2. Noise at Electrode—Electrolyte Interface (Case of 1.1 Concentrated Electrolyte).- 3.3. Noise of the Synthetic Membrane—Electrolyte Interface.- 4. Application to Some Biomolecular Systems.- 4.1. Ionic Atmosphere around DNA and Direct Visualization of the Thermal Transconformation (Helix ? Coil Transition).- 4.2. Demonstration of the Permanent Dipole Fluctuations of Collagen Molecules.- 5. Conclusion.- Acknowledgment.- References.- 15. Cellular Spin Resonance (CSR).- 1. Introduction.- 2. Cellular Spinning.- 2.1. In a Static Field.- 2.2. In a Simple Oscillatory Field.- 2.3. In a Rotating Field.- 3. Particle Spinning.- 4. Theory.- 5. Conclusions.- Acknowledgments.- References.- 16. Dielectrophoretic Cell Sorting.- 1. Introduction.- 2. Theory.- 3. Sorter Design.- 4. Results.- 5. Conclusion.- References.- 17. A Qualitative, Molecular Model of the Nerve Impulse. Conductive Properties of Unsaturated Lyotropic Liquid Crystals.- 1. Introduction.- 2. Ordering in the Nerve Membrane.- 3. Electronic Conduction in Liquid Crystalline Membranes. Role of Unsaturated Lipids.- 4. Crystalline ? Liquid Crystalline Phase Transition of Phospholipid Membranes.- 5. Salt-Induced Conformational Changes in Phosphatidylserine.- 6. Charge-Transfer Complex of Phospholipid and Cholesterol.- 7. A Qualitative, Molecular Model of the Nerve Impulse.- Acknowledgments.- References.- 18. Conformation and Electronic Aspects of Chlorpromazine in Solution.- 1. Introduction.- 1.1. On the Structure of Chlorpromazine.- 1.2. Electronic Aspects of Chlorpromazine.- 2. Experimental.- 2.1. Materials.- 2.2. 1H NMR Measurements.- 2.3. 13C NMR Measurements.- 2.4. Electron Microscopy.- 3. Results and Discussion.- 3.1. Assignments of 1H Spectra.- 3.2. Solvent Effects.- 3.3. Irradiation.- 3.4. Conformation in CPZ · HCl Micelles.- 3.5. Electronic Disposition. Interactions of CPZ · HCl with an Electron Acceptor.- References.- 19. Electrochemistry of Drug Interactions and Incompatibilities.- 1. Scope and Limitations.- 1.1. Significance of Drug Interactions.- 1.2. Limitations of In Vitro Investigation.- 1.3. Advantages of the In Vitro Investigation of Drug Interactions and Incompatibilities.- 1.4. Interactions Investigated by Electrochemical Techniques.- 2. Methodologies.- 2.1. Introduction.- 2.2. Conductivity Titration.- 2.3. Voltammetry.- 2.4. Potentiometry.- 2.5. Other Physical Techniques.- 2.6. Biological and Clinical Techniques.- 3. Incompatibility between Anionic and Cationic Antibacterial Agents and Other Anionic and Cationic Drugs.- 4. Interactions of Chlorpromazine.- 4.1. The Significance of Chlorpromazine.- 4.2. Other Phenothiazine Drugs.- 4.3. Chlorpromazine—Iodine.- 4.4. Interactions between Chlorpromazine and Neural Transmitters.- 4.5. Chlorpromazine—Melanin Interactions.- 4.6. Chlorpromazine—Heparin Interaction.- 4.7. Chlorpromazine—Phenytoin Interaction.- 5. Interaction between Beta-Lactam Antibiotics and Aminoglycoside Antibiotics.- 5.1. Beta-Lactam Antibiotics.- 5.2. Aminoglycoside Antibiotics.- 5.3. Clinical Use of Combinations of Beta-Lactam and Aminoglycoside Antibiotics.- 5.4. Problems with Combinations of Beta-Lactam and Aminoglycoside Antibiotics.- 5.5. Electrochemical Investigation of the Beta-Lactam—Aminoglycoside Antibiotic Interaction.- 6. Interactions between Heparin and Antibiotics.- 6.1. Heparin.- 6.2. Heparin—Cation Interactions.- 6.3. Heparin—Antibiotic Interactions.- 7. Heparin—Lidocaine Noninteraction.- 8. Metachromasia.- 8.1. Definition.- 8.2. Applications of Metachromasia.- 8.3. Mechanism of Metachromasia.- 8.4. Electrochemical Investigations of Metachromasia.- References.- 20. Muscular Contraction.- 1. Introduction.- 2. The Mechanism of Muscular Contraction.- 2.1. The Cross-Bridge Model.- 2.2. The Search for a Biodynamic Principle.- 2.3. The Proto-Osmotic Mechanism of Muscular Contraction.- 3. The H+/K+ Circuit in Sarcomere.- 3.1. H+ /K+ Counterflux at Filaments.- 3.2. The Proton Circuit.- 4. Fenn Effect and Hill’s Equation.- 4.1. Energy Output of Muscles.- 4.2. Force—Velocity Relation.- 4.3. Isometric Tension.- 5. Discussion.- References.- 21. Transport in Plants.- 1. Introduction.- 2. Transport Phenomena in Plants.- 2.1. The Transport Network.- 2.2. Ascent of Sap.- 2.3. Transport of Photosynthates.- 2.4. Coupling of the Long-Distance Transport to Cellular Metabolism.- 3. Proto-Osmosis in Organismal Capillaries.- 3.1. Construction of an Organismal Capillary.- 3.2. The H+/K+ Counterflux.- 3.3. Proto-Osmosis.- 3.4. K+ Antiport by Proto-Osmosis.- 3.5. A Basic Unit of Plant Transport.- 4. Turgor Regulation.- 4.1. Stomatal Guard Cells.- 4.2. Leaf Mesophyll and Sink Tissues.- 5. Long-Distance Transport in Plants.- 5.1. Organismal Capillaries in the Plant Transport Systems.- 5.2. Transport in Xylem.- 5.3. Transport in Phloem.- 6. Discussion.- References.- 22. Electrochemical Methods for the Prevention of Microbial Fouling.- 1. Introduction.- 2. Approaches to Biofouling Prevention.- 2.1. Chemical and Mechanical Methods.- 2.2. Electrochemical Methods.- References.- Author Index.
1997-2024 DolnySlask.com Agencja Internetowa