• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Micro-Optics and Energy: Sensors for Energy Devices » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Micro-Optics and Energy: Sensors for Energy Devices

ISBN-13: 9783030436780 / Angielski / Miękka / 2021 / 207 str.

Jacob J. Lamb; Bruno G. Pollet
Micro-Optics and Energy: Sensors for Energy Devices Jacob J. Lamb Bruno G. Pollet 9783030436780 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Micro-Optics and Energy: Sensors for Energy Devices

ISBN-13: 9783030436780 / Angielski / Miękka / 2021 / 207 str.

Jacob J. Lamb; Bruno G. Pollet
cena 605,23
(netto: 576,41 VAT:  5%)

Najniższa cena z 30 dni: 578,30
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania
Kategorie:
Nauka, Chemia
Kategorie BISAC:
Science > Chemia - Fizyczna
Technology & Engineering > Power Resources - General
Technology & Engineering > Materials Science - Electronic Materials
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9783030436780
Rok wydania:
2021
Wydanie:
2020
Ilość stron:
207
Waga:
0.32 kg
Wymiary:
23.39 x 15.6 x 1.19
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Preface          

Section 1: Optical Properties for Sensors

Chapter 1.1: Introduction to Optical Sensors        

Authors: Jacob J. Lamb, Odne S. Burheim, Bruno G. Pollet and Dag R. Hjelme

Dimensions of Electrochemical Energy Storage Devices

Electrical vs Optical Sensors

General Principles of Fibre Optic Sensor Systems

Sensor Integration

References

Chapter 1.2: Light Properties and Sensors

Authors: Markus S. Wahl, Rolf S. Kristian, Harald I. Muri, Jacob J. Lamb and Dag R. Hjelme

Light as Electromagnetic Waves

Mathematical Formalism

Interaction of Light with Materials

Dielectric Materials

Semiconductor Physics pn-Junction

Light Sources and Detection

Thermal Sources

Non-Thermal Sources

Photodetectors           

Spectral Resolution

Fibre Optic Waveguides

Intrinsic Fibre Optic Sensors 

Discrete Point Temperature Sensors

Distributed Temperature Sensors

Extrinsic Fibre Optic Sensors

Single Point RI or Chemical Optical Fibre Sensors   

References     

Section 2: Optical Sensor Measurements

Chapter 2.1: Temperature and Humidity Measurements

Authors: Markus S. Wahl, Harald I. Muri, Jacob J. Lamb, Rolf S. Kristian and Dag R. Hjelme

Humidity as a Measurable Parameter

Principle of Humidity Sensing

Traditional Optical Humidity Detection         

Miniaturised Humidity Sensors          

Current Optical Temperature Sensor Technologies   

Blackbody Radiation-Based Temperature Sensing    

Absorption-Based Temperature Sensing        

Polarimetric-Based Temperature Sensors     

Interferometer-Based Temperature Sensors   

Fibre Bragg Grating Temperature Sensors   

Some Challenges and Solutions for Optical Fibre-Based Sensing    

References     

Chapter 2.2: Hydrogen Gas Measurements          

Authors: Harald I. Muri, Jacob J. Lamb, Markus S. Wahl, Rolf K. Snilsberg and Dag R. Hjelme

Traditional Gas Optical Measurements          

Infrared Absorption    

Raman Scattering       

Raman- and IR-Based Optical Fibre Hydrogen Sensors       

Thin Film-Based Optical Fibre Hydrogen Sensors    

Measurement Principles         

Measurement Methods           

References     

Chapter 2.3: Sensor Fusion 

Authors: Harald I. Muri, Markus S. Wahl, Jacob J. Lamb, Rolf K. Snilsberg and Dag R. Hjelme

Principle of Sensor Fusion     

Sensor Fusion Possibilities     

Data Handling

References     

Section 3: Energy Production and Storage

Chapter 3.1: Hydrogen Fuel Cells and Water Electrolysers        

Authors: Jacob J. Lamb, Odne S. Burheim and Bruno G. Pollet

Introduction   

Hydrogen Production

Traditional Production           

Electrochemical Production   

Turning Hydrogen into Electricity     

Effects of Temperature and Humidity Within PEMFCs         

Distribution of Temperature and Humidity Within PEMFCs 

Research Needs and Measurement Challenges         

Possibilities for Micro Optical Technologies in PEMFCs      

References

Chapter 3.2: Ultrasound-Assisted Electrolytic Hydrogen Production

Authors: Md Hujjatul Islam, Jacob J. Lamb, Odne S. Burheim and Bruno G. Pollet

            Introduction

            Hydrogen Production Methods

            Sonoelectrochemical Production of Hydrogen

Effect of Ultrasound on the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER)

Effect of Ultrasound on the Hydrogen Yield

Summary and Outlook

References

Chapter 3.3: Low Grade Waste Heat to Hydrogen

Authors: Yash D. Raka, Robert Bock, Jacob J. Lamb, Bruno G. Pollet and Odne S. Burheim

            Introduction

            Theoretical Background

Regeneration Process

            Thermodynamic Model of a RED Cell

            Pumping System Model

            Mass Balances

            Waste Heat Regeneration System

            Economic Model

            Scenario Study

            Results and Discussion

                        Feed Solution Concentration

                        Membrane Properties: Permselectivity and Membrane Resistance

                        Cell Geometry: Residence Time and Channel Thickness

Economic Analysis: Membrane cost, membrane lifetime and cost of waste heat

                        Economic Comparison: Capex and LCH

            Conclusion

            Refernces

Chapter 3.4: Liquid Air Energy Storage

Authors: Zhongxuan Liu, Federico Ustolin, Lena Spitthoff, Jacob J. Lamb, Tuls Gundersen, Bruno G. Pollet and Odne S. Burheim

            Introduction

                        Thermal Energy Storage

                        Electrical Energy Storage

            LAES Technologies

                        Simulation of the Process Concepts

                        Linde-Hampson Process

                        Claude Process

                        Kapitza Process

                        Modified Claude Process

            Results and Discussion

            Future Prospects

References

Chapter 3.5: Hydrogen and Biogas

Authors: Eline Gregorie, Jacob J. Lamb, Kristian M. Lien, Bruno G. Pollet and Odne S. Burheim

            Introduction

            Biogas Reforming for Hydrogen Production

            Reforming Techniques for Hydrogen Production

                        Steam Reforming Process

                        Partial Oxidation Reforming Process

                        Autothermal Reforming Process

                        Dry Reforming Process

                        Dry Oxidation Reforming

            Hydrogen Purification Processes

                        Condenser Unit

                        Water-Gas Shift Reaction

                        Pressure Swing Adsorption

                        Membrane Reactors

            Biogas as Source for Reforming: The Influence of Impurities in Biogas

                        Hydrogen Sulfide

                        Oxygen

                        Siloxanes

            Example of Plant and Economic Analysis

            Energy Storage & Biogas Upgrading using Renewable Hydrogen

            Methanation and Biogas Upgrading

                        Catalytic Methanation

                        Biological Methanation

                        Methanation of Biogas and Comparison of Methanation Technologies

            Power-to-Biogas Process

                        Carbon Source

                        Electrolysers Consideration in the Case of PtG Chain

                        The Efficiency of the Process

                        Economic Consideration

            Conclusions

            References

Chapter 3.6: Lifetime Expectancy of Lithium-ion Batteries

Authors: Lena Spitthoff, Jacob J. Lamb, Bruno G. Pollet and Odne S. Burheim

            Introduction

            Terminology

                        Working Principle of a Lithium-ion Battery

                        Applications, Requirements and Problems

                        Second Life

                        Safety Concerns and Ageing

                        Definitions and Calculations

            Chemistries

                        Cathode Materials: LCO, LMO, NMC and LFP

                        Anode Materials: Hard Carbon and Graphite

                        Separator, Electrolyte and Additives

            Capacity Fading and Ageing Prospects

Cycling: Capacity Fade as a Function of Temperature, C Rate and SOC Window

Calendar Ageing: Capacity Fade as a Function of SOC and Temperature

                        Ageing and Mechanisms

                        Data Extraction Sensitivity

                        Comparison Justification

            Outlook

            References

Section 4: Micro-Optical Sensors in Energy Systems

Chapter 4.1: Thermal Management of Lithium Ion Batteries     

Authors: Lena Spitthoff, Eilif S. Øyre, Harald I. Muri, Markus S. Wahl, Astrid F. Gunnarshaug, Jacob J. Lamb, Bruno G. Pollet and Odne S. Burheim

Introduction   

System Description    

Importance of Thermal Management 

Calculating the Internal Heat Production      

Thermal Conductivity Measurement  

Determining Parameters Experimentally with Micro Optic Sensors 

Temperature Characterisation Requirements

Fibre Bragg Grating Sensor  

Temperature Gradient Ratio  

Experimental Setup    

Calibration     

Implementation of Sensors into a Li-Ion Pouch         

Conclusion     

References     

Chapter 4.2: Reverse Electrodialysis Cells

Authors: Kjersti W. Krakhella, Markus S. Wahl, Eilif S. Øyre, Jacob J. Lamb & and Odne S. Burheim

Introduction   

Salinity Gradient Energy Storage      

Electrodialytic Energy Storage System Principles     

Determining Parameters Experimentally with Micro Optic Sensors 

Sensor Design

Experimental Setup    

Calibration of Micro Sensors 

Implementation of Sensors into a Reverse Electrodialysis Cell          

Conclusion     

References     

Acknowledgements  

Bruno G. Pollet is a full Professor of Renewable Energy at the Norwegian University of Science and Technology (NTNU) in Trondheim. He currently leads the "NTNU Team Hydrogen". He is a Fellow of the Royal Society of Chemistry (RSC, UK), an Associate Fellow of the Institution of Chemical Engineers (IChemE, UK) and Board of Directors’ member of the International Association for Hydrogen Energy (IAHE). He is currently Visiting Professors (VP) at the University of Ulster (UK) and the University of the Western Cape (RSA), and was “Professeur des Universités Invité” at the Université de Franche-Comté (France) and a VP at the University of Yamanashi, Professor Watanabe’s labs (Japan). His research covers a wide range of areas in Electrochemistry, Electrochemical Engineering, Electrochemical Energy Conversion and Sono-electrochemistry (Power Ultrasound in Electrochemistry) from the development of novel hydrogen & fuel cell materials, CO2 conversion, to water treatment/disinfection demonstrators & prototypes. He was a full Professor of Energy Materials and Systems at the University of the Western Cape (RSA) and R&D Director of the National Hydrogen South Africa (HySA) Systems Competence Centre. He was also a Research Fellow and Lecturer in Chemical Engineering at The University of Birmingham (UK) as well as a co-founder and an Associate Director of the Birmingham Centre for Hydrogen and Fuel Cell Research. He has worked for Johnson Matthey Fuel Cells Ltd (UK) and other various industries worldwide as Technical Account Manager, Project Manager, Research Manager, R&D Director, Head of R&D and Chief Technology Officer. He was awarded a Diploma in Chemistry and Material Sciences from the Université Joseph Fourier (Grenoble, France), a BSc (Hons) in Applied Chemistry from Coventry University (UK) and an MSc in Analytical Chemistry from The University of Aberdeen (UK). He also gained his PhD in Physical Chemistry in the field of Electrochemistry and Sonochemistry under the supervision of Professors J. Phil Lorimer & Tim J. Mason at the Sonochemistry Centre of Excellence, Coventry University. He undertook his PostDoc in Electrocatalysis at the Liverpool University Electrochemistry group led by Professor David J. Schiffrin.

Affiliations

Hydrogen Energy and Sonochemistry research group, Department of Energy and Process Engineering, Faculty of Engineering & NTNU Team Hydrogen, Norwegian University of Science and Technology (NTNU), Trondheim, Norway


Jacob J. Lamb obtained both his B.Sc. and M.Sc. in Biochemistry at the University of Otago, New Zealand, where he worked in a research laboratory with Associate Professor Julian Eaton-Rye and Associate Professor Martin Hohmann-Marriott. He moved to Norway in 2013 to undertake a PhD in Biotechnology under the supervision of Associate Professor Martin Hohmann-Marriott, which he completed in June 2016. From 2016 to 2018, he undertook postdoctoral research in biogas and sensor technologies with Professor Dag R. Hjelme and Associate Professor Kristian M. Lien at NTNU. Since 2018, he has worked as a senior researcher at NTNU on a variety of projects within the fields of biology, bioenergy, renewable energy, sensor technologies and energy storage His areas of expertise include photosynthesis, microbiology, biological and biochemical techniques, electronics and programming, renewable energy, energy storage, sensor technologies, optical spectroscopy and process engineering. His research motivation is to improve renewable energy sources, increase sustainability within agricultural and aqua cultural industries, develop technologies for climate change mitigation as well as develop ways to measure, analyse, and optimize biological processes.

Affiliations

Department of Electronic Systems & Department of Energy and Process Engineering & ENERSENSE NTNU

This book provides a brief research source for optical fiber sensors for energy production and storage systems, discussing fundamental aspects as well as cutting-edge trends in sensing. This volume provides industry professionals, researchers and students with the most updated review on technologies and current trends, thus helping them identify technology gaps, develop new materials and novel designs that lead to commercially viable energy storage systems.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia