


ISBN-13: 9781119091172 / Angielski / Twarda / 2020 / 376 str.
ISBN-13: 9781119091172 / Angielski / Twarda / 2020 / 376 str.
List of Contributors xiPreface xvAcknowledgments xvii1 Introduction 1De-en Jiang, Shannon M. Mahurin and Sheng DaiReferences 32 CO2 Capture and Separation of Metal-Organic Frameworks 5Xueying Ge and Shengqian Ma2.1 Introduction 52.1.1 CO2 Capture Process 72.1.2 Introduction to MOFs for CO2 Capture and Separation 72.2 Evaluation Theory 82.2.1 Isosteric Heat of Adsorption (Qst) 82.2.1.1 The Virial Method 1 92.2.1.2 The Virial Method 2 92.2.1.3 The Langmuir-Freundlich Equation 92.2.2 Ideal Adsorbed Solution Theory (IAST) 102.3 CO2 Capture Ability in MOFs 102.3.1 Open Metal Site 102.3.2 Pore Size 112.3.3 Polar Functional Group 132.3.4 Incorporation 142.4 MOFs in CO2 Capture in Practice 142.4.1 Single-Component CO2 Capture Capacity 142.4.2 Binary CO2 Capture Capacity and Selectivity 162.4.3 Other Related Gas-Selective Adsorption 192.5 Membrane for CO2 Capture 192.5.1 Pure MOF Membrane for CO2 Capture 202.5.2 MOF-Based Mixed Matrix Membranes for CO2 Capture 202.6 Conclusion and Perspectives 21Acknowledgments 21References 213 Porous Carbon Materials 29Xiang-Qian Zhang and An-Hui Lu3.1 Introduction 293.2 Designed Synthesis of Polymer-Based Porous Carbons as CO2 Adsorbents 303.2.1 Hard-Template Method 313.2.1.1 Porous Carbons Replicated from Porous Silica 313.2.1.2 Porous Carbons Replicated from Crystalline Microporous Materials 333.2.1.3 Porous Carbons Replicated from Colloidal Crystals 353.2.1.4 Porous Carbons Replicated from MgO Nanoparticles 363.2.2 Soft-Template Method 383.2.2.1 Carbon Monolith 383.2.2.2 Carbon Films and Sheets 453.2.2.3 Carbon Spheres 483.2.3 Template-Free Synthesis 493.3 Porous Carbons Derived from Ionic Liquids for CO2 Capture 533.4 Porous Carbons Derived from Porous Organic Frameworks for CO2 Capture 563.5 Porous Carbons Derived from Sustainable Resources for CO2 Capture 613.5.1 Direct Pyrolysis and/or Activation 633.5.2 Sol-Gel Process and Hydrothermal Carbonization Method 643.6 Critical Design Principles of Porous Carbons for CO2 Capture 673.6.1 Pore Structures 673.6.2 Surface Chemistry 723.6.2.1 Nitrogen-Containing Precursors 723.6.2.2 High-Temperature Reaction and Transformation 763.6.2.3 Oxygen-Containing or Sulfur-Containing Functional Groups 773.6.3 Crystalline Degree of the Porous Carbon Framework 813.6.4 Functional Integration and Reinforcement of Porous Carbon 833.7 Summary and Perspective 88References 894 Porous Aromatic Frameworks for Carbon Dioxide Capture 97Teng Ben and Shilun Qiu4.1 Introduction 974.2 Carbon Dioxide Capture of Porous Aromatic Frameworks 984.3 Strategies for Improving CO2 Uptake in Porous Aromatic Frameworks 984.3.1 Improving the Surface Area 984.3.2 Heteroatom Doping 994.3.3 Tailoring the Pore Size 1024.3.4 Post Modification 1034.4 Conclusion and Perspectives 114References 1145 Virtual Screening of Materials for Carbon Capture 117Aman Jain, Ravichandar Babarao and Aaron W. Thornton5.1 Introduction 1185.2 Computational Methods 1185.2.1 Monte Carlo-Based Simulations 1185.2.2 MD Simulation 1225.2.3 Density Functional Theory 1225.2.4 Empirical, Phenomenological, and Fundamental Models 1235.2.4.1 Langmuir and Others 1245.2.4.2 Ideal Adsorbed Solution Theory (IAST) 1245.2.5 Materials Genome Initiative 1265.2.6 High-Throughput Screening 1275.3 Adsorbent-Based CO2 Capture 1295.3.1 Direct Air Capture 1305.4 Membrane-Based CO2 Capture 1315.5 Candidate Materials 1315.5.1 Metal Organic Frameworks 1315.5.2 Zeolites 1325.5.3 Zeolitic Imidiazolate Frameworks 1335.5.4 Mesoporous Carbons 1335.5.5 Glassy and Rubbery Polymers 1335.6 Porous Aromatic Frameworks 1345.7 Covalent Organic Frameworks 1355.8 Criteria for Screening Candidate Materials 1355.8.1 CO2 Uptake 1355.8.2 Working Capacity 1365.8.3 Selectivity 1375.8.4 Diffusivity 1375.8.5 Regenerability 1385.8.6 Breakthrough Time in PSA 1385.8.7 Heat of Adsorption 1385.9 In-Silico Insights 1385.9.1 Effect of Water Vapor 1385.9.2 Effect of Metal Exchange 1415.9.3 Effect of Ionic Exchange 1425.9.4 Effect of Framework Charges 1425.9.5 Effect of High-Density Open Metal Sites 1445.9.6 Effect of Slipping 145References 1456 Ultrathin Membranes for Gas Separation 153Ziqi Tian, Song Wang, Sheng Dai and De-en Jiang6.1 Introduction 1536.2 Porous Graphene 1556.2.1 Proof of Concept 1556.2.2 Experimental Confirmation 1566.2.3 More Realistic Simulations to Obtain Permeance 1586.2.4 Further Simulations of Porous Graphene 1606.2.5 Effect of Pore Density on Gas Permeation 1616.3 Graphene-Derived 2D Membranes 1636.3.1 Poly-phenylene Membrane 1636.3.2 Graphyne and Graphdiyne Membranes 1656.3.3 Graphene Oxide Membranes 1666.3.4 2D Porous Organic Polymers 1666.4 Porous Carbon Nanotube 1686.5 Porous Porphyrins 1726.6 Flexible Control of Pore Size 1746.6.1 Ion-Gated Porous Graphene Membrane 1746.6.2 Bilayer Porous Graphene with Continuously Tunable Pore Size 1766.7 Summary and Outlook 178Acknowledgments 179References 1797 Polymeric Membranes 187Jason E. Bara and W. Jeffrey Horne7.1 Introduction 1877.1.1 Overview of Post-Combustion CO2 Capture 1877.1.2 Polymer Membrane Fundamentals and Process Considerations 1897.2 Polymer Types 1937.2.1 Poly(Ethylene Glycol) 1937.2.2 Polyimides and Thermally Rearranged Polymers 1957.2.3 Polymers of Intrinsic Microporosity (PIMs) 1967.2.4 Poly(Ionic Liquids) 1977.2.5 Other Polymer Materials 1987.3 Facilitated Transport 1997.4 Polymer Membrane Contactors 2027.5 Summary and Perspectives 203References 2048 Carbon Membranes for CO2 Separation 215Kuan Huang and Sheng Dai8.1 Introduction 2158.2 Theory 2168.3 Graphene Membranes 2178.4 Carbon Nanotube Membranes 2218.5 Carbon Molecular Sieve Membranes 2228.6 Conclusions and Outlook 230Acknowledgments 230References 2319 Composite Materials for Carbon Capture 237Sunee Wongchitphimon, Siew Siang Lee, Chong Yang Chuah, Rong Wang and Tae-Hyun Bae9.1 Introduction 2379.1.1 Technologies for CO2 Capture 2389.1.2 Composite Materials for Adsorptive CO2 Capture 2399.1.3 Composite Materials for Membrane-Based CO2 Capture 2409.2 Fillers for Composite Materials 2429.2.1 Zeolites 2429.2.2 Metal-Organic Frameworks 2439.2.3 Other Particulate Materials - Carbon Molecular Sieves and Mesoporous Silica 2479.2.4 1-D Materials - Carbon Nanotubes 2479.2.5 2-D Materials - Layered Silicate and Graphene 2489.3 Non-Ideality of Filler/Polymer Interfaces 2509.3.1 Sieve-in-a-Cage 2519.3.2 Polymer Matrix Rigidification 2539.3.3 Plugged Filler Pores 2539.4 Composite Adsorbents 2539.5 Composite Membranes (Mixed-Matrix Membranes) 2559.6 Conclusion and Outlook 256References 26010 Poly(Amidoamine) Dendrimers for Carbon Capture 267Ikuo Taniguchi10.1 Introduction 26710.2 Poly(Amidoamine) in CO2 Capture 26910.2.1 A Brief History 26910.2.2 Immobilization of PAMAM Dendrimers 27010.2.2.1 Immobilization in Crosslinked Chitosan 27010.2.2.2 Immobilization in Crosslinked Poly(Vinyl Alcohol) 27310.2.2.3 Immobilization in Crosslinked PEG 27510.3 Factors to Determine CO2 Separation Properties 27610.3.1 Visualization of Phase-Separated Structure 27610.3.2 Effect of Humidity 28010.3.3 Effect of Phase-Separated Structure 28110.4 CO2-Selective Molecular Gate 28410.5 Enhancement of CO2 Separation Performance 28610.6 Conclusion and Perspectives 288Acknowledgments 291References 29111 Ionic Liquids for Chemisorption of CO2 297Mingguang Pan and Congmin Wang11.1 Introduction 29711.2 PILs for Chemisorption of CO2 29911.3 Aprotic Ionic Liquids for Chemisorption of CO2 30011.3.1 N as the Absorption Site 30011.3.1.1 Amino-Containing Ionic Liquids 30011.3.1.2 Azolide Ionic Liquids 30211.3.2 O as the Absorption Site 30311.3.3 Both N, O as Absorption Sites 30311.3.4 C as the Absorption Site 30611.4 Metal Chelate ILs for Chemisorption of CO2 30711.5 IL-Based Mixtures for Chemisorption of CO2 30711.6 Supported ILs for Chemisorption of CO2 30811.7 Conclusion and Perspectives 309Acknowledgments 309References 31012 Ionic Liquid-Based Membranes 317Chi-Linh Do-Thanh, Jennifer Schott, Sheng Dai and Shannon M. Mahurin12.1 Introduction 31712.1.1 Transport in Ionic Liquids 32012.1.2 Facilitated Transport 32112.2 Supported IL Membranes 32312.2.1 Microporous Supports and Nanoconfinement 32712.2.2 Hollow-Fiber Supports 32812.3 Polymerizable ILs 33012.4 Mixed-Matrix ILs 33212.5 Conclusion and Outlook 336References 336Index 347
DE-EN JIANG, PHD, is an associate professor in the Department of Chemistry at the University of California, Riverside. He has over 15 years of experience in computer simulation of advanced materials for gas separations.SHANNON M. MAHURIN, PHD, is a Staff Scientist in the Chemical Sciences Division at Oak Ridge National Laboratory in Tennessee. He is an expert in the characterization and testing of novel materials, such gas graphene membranes, for separations.SHENG DAI, PHD, is a Corporate Fellow and Group Leader in the Chemical Sciences Division at Oak Ridge National Laboratory in Tennessee and Professor of Chemistry at the University of Tennessee. He has been working on materials synthesis and discovery for separations for over 20 years, winning the American Chemical Society National Award in Separations Science and Technology in 2019.
1997-2026 DolnySlask.com Agencja Internetowa





