Chapter 1 - Electronic and Vibrational States in Organic Solids1.1 Introduction1.2 Band Theory for Inorganic Single Crystals1.2.1 Schrödinger Wave Equation1.2.2 Density of Electron States1.2.3 Occupation of Energy States1.2.4 Conductors, Semiconductors and Insulators1.2.5 Electrons and Holes1.2.6 Doping1.3 Lattice Vibrations1.4 Amorphous Inorganic Semiconductors1.5 Organic Semiconductors1.5.1 Electronic Orbitals and Bands in Important Organic Compounds1.5.2 Molecular Crystals1.5.3 Polymers1.5.4 Charge-transfer Complexes1.5.5 Graphene1.5.6 Fullerenes and Carbon Nanotubes1.5.7 Doping of Organic SemiconductorsProblemsReferencesFurther ReadingChapter 2 - Electrical Conductivity: Fundamental Principles2.1 Introduction2.2 Classical Model2.3 Boltzmann Transport Equation2.4 Ohm's Law2.5 Charge Carrier Mobility2.6 Equilibrium Carrier Statistics2.6.1 Intrinsic Conduction2.6.2 Carrier Generation and Recombination2.6.3 Extrinsic Conduction2.6.4 Fermi Level Position2.6.5 Meyer-Neldel Rule2.7 Excess Carriers2.7.1 Quasi-Fermi Level2.7.2 Diffusion and Drift2.7.3 Gradients in the Quasi-Fermi Levels2.7.4 Carrier Lifetime2.8 SuperconductivityProblemsReferencesFurther ReadingChapter 3 - Defects and Nanoscale Phenomena3.1 Introduction3.2 Material Purity3.3 Point and Line Defects3.4 Traps and Recombination Centres3.4.1 Direct Recombination3.4.2 Recombination via Traps3.5 Grain Boundaries and Surfaces3.5.1 Interface States3.6 Polymer Defects3.6.1 Solitons3.6.2 Polarons and Bipolarons3.7 Disordered Semiconductors3.8 Electron Transport in Low Dimensional Systems3.8.1 Two-dimensional Transport3.8.2 One-dimensional Transport3.8.3 Zero-dimensional Transport3.9 Nanosystems3.9.1 Scaling Laws3.9.2 Interatomic ForcesProblemsReferencesFurther ReadingChapter 4 - Electrical Contacts: Ohmic and Rectifying Behaviour4.1 Introduction4.2 Practical Considerations4.3 Neutral, Ohmic and Blocking Contacts4.4 Schottky Barrier4.4.1 Barrier Formation4.4.2 Image Force4.4.3 Current versus Voltage Behaviour4.4.4 Effect of an Interfacial Layer4.4.5 Organic Schottky Diodes4.5 Molecular Devices4.5.1 Metal/Molecule Contacts4.5.2 Break Junctions4.5.3 Molecular Rectifying Diodes4.5.4 Molecular Resonant Tunnelling DevicesProblemsReferencesFurther ReadingChapter 5 - Metal/Insulator/Semiconductor Devices: The Field Effect5.1 Introduction5.2 Ideal MIS device5.3 Departures from Ideality5.3.1 Insulator Charge and Work Function Differences5.3.2 Interface Traps5.4 Organic MIS Devices5.4.1 Inorganic Semiconductor/Organic Insulator Structures5.4.2 Organic Semiconductor StructuresProblemsReferencesFurther ReadingChapter 6 - DC Conductivity6.1 Introduction6.2 Electronic versus Ionic Conductivity6.3 Quantum Mechanical Tunnelling6.4 Variable Range Hopping6.5 Fluctuation-induced Tunnelling6.6 Space Charge Injection6.6.1 Effect of Traps6.6.2 Two-carrier Injection6.7 Schottky, Fowler-Nordheim and Poole-Frenkel Effects6.8 Electrical Breakdown6.8.1 Intrinsic Breakdown6.8.2 Electromechanical Breakdown6.8.3 Thermal Runaway6.8.4 Contact Instability6.8.5 Other Effects6.9 Electromigration6.10 Measurement of Trapping Parameters6.10.1 Thermally Stimulated Conductivity6.10.2 Capacitance SpectroscopyProblemsReferencesFurther ReadingChapter 7 - Polarization and AC Conductivity7.1 Introduction7.2 Polarization7.2.1 Dipole Creation7.2.2 Permanent Polarization7.2.3 Piezoelectricity, Pyroelectricity and Ferroelectricity7.3 Conductivity at High Frequencies7.3.1 Displacement Current7.3.2 Frequency-dependent Permittivity7.3.3 AC Conductivity7.4 Impedance Spectroscopy7.5 AC Electrical Measurements7.5.1 Lock-in Amplifier7.5.2 Scanning Microscopy7.6 Electrical NoiseProblemsReferencesFurther ReadingChapter 8 - Organic Field Effect Transistors8.1 Introduction8.2 Physics of Operation8.3 Transistor Fabrication8.4 Practical Device Behaviour8.4.1 Contact Resistance8.4.2 Material Morphology and Traps8.4.3 Short Channel Effects8.4.4 Organic Semiconductors8.4.5 Gate Dielectric8.5 Organic Integrated Circuits8.6 Nanotube and Graphene FETs8.7 Single-electron Transistors8.8 Transistor-based Chemical Sensors8.8.1 Ion-sensitive FETs8.8.2 Charge-flow TransistorProblemsReferencesFurther ReadingChapter 9 - Electronic Memory9.1 Introduction9.2 Memory Types9.3 Resistive Memory9.4 Organic Flash Memory9.5 Ferroelectric RAMs9.6 Spintronics9.7 Molecular MemoriesProblemsReferencesFurther ReadingChapter 10 - Light-emitting Devices10.1 Introduction10.2 Light Emission Processes10.3 Operating Principles10.4 Colour Measurement10.5 Photometric Units10.6 OLED Efficiency10.7 Device Architectures10.7.1 Top- and Bottom-emitting OLEDs10.7.2 Electrodes10.7.3 Hole- and Electron-transport Layers10.7.4 Triplet Management10.7.5 Blended-layer and Molecularly-engineered Devices10.8 Increasing the Light Output10.8.1 Efficiency Losses10.8.2 Microlenses and Shaped Substrates10.8.3 Microcavities10.8.4 Device Degradation10.9 Full-colour Displays10.10 Organic Semiconductor Lasers10.11 OLED Lighting10.12 Light-emitting Electrochemical Cells10.13 Light-emitting TransistorsProblemsReferencesFurther ReadingChapter 11 - Photoconductive and Photovoltaic Devices11.1 Introduction11.2 Photoconductivity11.2.1 Optical Absorption11.2.2 Carrier Lifetime11.2.3 Photosenstivity11.3 Xerography11.4 Photovoltaic Principles11.4.1 Electrical Characteristics11.4.2 Efficiency11.5 Organic Solar Cells11.5.1 Carrier Collection11.5.2 Bulk Heterojunction Solar Cells11.5.3 Electrodes and Device Architectures11.5.4 Tandem Cells11.5.5 Upconversion11.5.6 Device Degradation11.6 Dye-sensitized Solar Cells11.7 Hybrid Solar Cells11.7.1 Polymer-Metal Oxide Devices11.7.2 Inorganic Semiconductor-Polymer Hole-transporter Cells11.7.3 Perovskite Solar Cells11.8 Luminescent Solar Concentrator11.9 Organic Photodiodes and PhototransistorsProblemsReferencesFurther ReadingChapter 12 - Emerging Devices and Systems12.1 Introduction12.2 Molecular Logic Circuits12.3 Inspiration from the Natural World12.3.1 Amino Acids, Peptides and Proteins12.3.2 Nucleotides, DNA and RNA12.3.3 ATP, ADP12.3.4 The Biological Membrane and Ion Transport12.3.5 Electron Transport12.3.6 Neurons12.4 Computing Strategies12.4.1 Von Neumann Computer12.4.2 Biological Information Processing12.4.3 Artificial Neural Networks12.4.4 Organic Neuromorphic Devices12.4.5 DNA and Microtubule Electronics12.4.6 Quantum Computing12.4.7 Evolvable Electronics12.5 Fault Tolerance and Self Repair12.6 Bacteriorhodopsin - A Light-driven Proton Pump12.7 Photosynthesis and Artificial Molecular Architectures12.8 Bio-chemical Sensors12.8.1 Biocatalytic Sensors12.8.2 Bioaffinity Sensors12.9 Electronic Olfaction and GustationProblemsReferencesFurther Reading
Michael C. Petty is Professor Emeritus in the Department of Engineering at the University of Durham in the United Kingdom. He is Past President of the International Society for Molecular Electronics and Biocomputing and a previous Chairman of the School of Engineering at Durham University. He has published extensively in the areas of organic electronics and molecular electronics.