Part I Extension of planar pi-electron systems.- Dibenzopentalenes.- Synthesis of dibenzopentalenes using nickel catalysts.- Extension of dipenzopentalenes.- Dinaphthopentalenes.- Benzodifurans.- Synthesis of benzodifurans.- Application of benzodifurans for organic electro-luminescence.- Crystal engineering of substituted acenes.- Photoluminescence of organic crystals.- Part II Bowl-shaped pi-electron systems.- Sumanenes.- Chiral sumanenes.- Heterosumanenes.- Triazasumanenes.- Trithiasumanenes.- Trisilasumanenes.- Triphosphasumanenes.- Part III Open-shell pi-electron systems.- Singlet 1,3-diradicals.- Twisted 1,4-diradicals.- Stabilized high-spin systems.- Part IV Boron-containing pi-electron systems.- pi-Extended boroles.- Boron-doped nanographenes.- Part V Silicon-containing pi-electron systems.- Silenes.- Disilenes.- Tetrasilacyclobutadienes.- Disilynes.- Part VI Porphyrinoids.- N-confused porphyrinoids.- N-confused porphyrins.- N-fused porphyrins.- Neo-confused corroles.- N-confused hexaphyrins.- Heteroatom-containing porphyrinoids.- Sulfur-substituted porphyrins.- Phosphorus-substituted porphyrins.- Phosphorus and sulfur-containing porphyrinoids.- Diazaporphyrins.- Synthesis of novel porphyrinoids from dipyrins.- Anti-aromatic dipyrin-based annulenes.- Azacorroles.- Diazaporphyrins.- Thiacorroles.- Dithiaporphyrins.- Norcorroles.- Oxacorroles.- Porphyrin arrays.- Linear porphyrin arrays.- Cyclic porphyrin arrays.- Soluble porphyrinoid precursors for solution processing.- Self-assembly of porphyrins for energy conversion.- Formation of porphyrin/fullerene nanorods.- Optoelectronic properties of porphyin/fullerene nanorods.- Porphyrin-based nanotubes.- Formation of porphyrin nanotubes by self-assembly.- Supramolecular peapods.- Sequence control of porphyins.- Control of heterojunction structures.- Porphyrin/metallofullerene complexes.- Patterning of porphyrins on metal surfaces.- Porphyrin-based liquid crystals.- Solid-phase synthesis of metal complex arrays.- Phthalocyanines.- MCD spectroscopy of phthalocyanines.- Subphthtalocyanines.- Superphthalocyanines.- NIR-absorbable phthalocyanines.- Sandwich complexes of phthalocyanines.- Phosphorus-containing phthalocyanines.- Metal nano-particle/porphyrinoid hybrids.- Part VII Molecular electronics.- Thiophene-based molecular wires.- Polymer nanotubes.- Carrier transport properties of pi-conjugated molecular nanowires.- Part VIII Fullerenes, carbon nanotubes and nanographenes.- Fullerene derivatives for organic solar cells.- Design and synthesis of fullerene derivatives bearing high LUMO levels.- Morphology control of the active layers for achieving high efficiencies.- Molecular surgery of fullerenes.- Encapsulation of hydrogen molecules into fullerenes.- Encapsulation of helium atoms into fullerenes.- Encapsulation of water molecules into fullerenes.- Endohedral metallofullerenes.- Electron donor–acceptor systems containing endohedral metallofullerenes.- Carrier transport properties of endohedral metallofullerenes.- Assemblies of carbon nanotubes.- Functionalization of carbon nanotubes.- Organic chemistry of nanographenes.- Part IX STM microscopy for characterization of pi-electron systems.- STM microscopy for characterization of pi-electron systems.- Part X pi-Electron systems in biosystems and biomimetics.- Artificial photosynthesis based on pi-electron systems.- Artificial cell membranes containing pi-electron systems.- Electron transfer in photosynthetic reaction center.- Artificial nucleic acids.- DNA as molecular wires.- Spectroscopic analysis of Rhodopsin.- Mechanism of photoluminescence in Luciferase.- Heme-proteins.- Computational calculations of photo-induced energy transfer.
This book presents the most advanced review available of all aspects of π-electron systems, including novel structures, new synthetic protocols, chemical and physical properties, spectroscopic and computational insights, molecular engineering, device properties, and physiological properties. π-Electron systems are ubiquitous in nature. Plants convert light energy into chemical energy by photosynthetic processes, in which chlorophylls and other porphyrinoids play an important role. On the one hand, research to learn about photosynthesis from nature has led to understanding of electron and energy transfer processes and to achieving artificial energy conversion systems inspired by nature. On the other hand, recent advances in organic and inorganic chemistry make it possible to construct novel π-electron systems that had never existed in nature. The authors of this book are from a variety of research fields including organic chemistry, inorganic chemistry, physical chemistry, materials science, and biology, providing a comprehensive overview of π-electron systems for a broad readership. Not only specialists but also graduate students working in π-electron systems will find the book of great interest. Throughout, the diverse potential for future fruitful applications of π-electron systems is revealed to the reader.