ISBN-13: 9781461399506 / Angielski / Miękka / 2012 / 630 str.
ISBN-13: 9781461399506 / Angielski / Miękka / 2012 / 630 str.
In Volume 6 of the Advances in Solar Energy we have specifically targeted for a review the rich experience of the Power Utilities. Their hands-on experience in a large variety of means to employ solar energy conversion and to evaluate the technical and economical feasibilities is of great importance to their future use. In designing the lay-out for this volume, we wanted to collect all relevant information, including success and failures and wanted to emphasize the lessons learned from each type of experiment. The publication of such a review now has the advantage of a settled experience in the first phase of solar involvement of the utility industry with a large amount of data analyzed. We are confident that this information will be of great value to direct the future development of the solar energy mix within this industry. We have added to this set of reviews three articles which deal with the most promising high-technology part of solar energy conversion using exclusively solid state devices: solar cells. The development over the last two decades from barely 10% to now in excess of 30% conversion efficiency is breathtaking. In addition, the feasibility of economic midrange efficient thin-film technology holds the promise of opening large sc ale markets in the near future. This field will enter head-on competition for large power generation with more conventional technology.
Contensts.- 1 The U.S. Electric Utility Industry’s Activities in Solar and Wind Energy: Survey and Perspective.- 1.1 Abstract.- 1.2 Background.- 1.2.1 Introduction.- 1.2.2 Purpose and Scope.- 1.2.3 Factors Influencing Utility Applications of Solar and Wind Energy.- 1.2.3A Utility Characteristics.- 1.2.3B Emergence of Least-Cost Planning.- 1.2.3C Competition Among Resource Alternatives.- 1.2.3D Innovation in the Electric Utility Industry.- 1.2.3E Utility Perspective on Solar Technologies.- 1.2.4 Overview of Utility Activities in Solar Energy.- 1.3 Solar Heating and Cooling.- 1.3.1 Introduction.- 1.3.2 Experiences of Individual Utilities.- 1.3.2A Long Island Lighting Company.- 1.3.2B Northern States Power Company.- 1.3.2C Pacific Gas & Electric Company.- 1.3.2D Tennessee Valley Authority.- 1.3.2D.1 Incentive Program — Various Locations, TN.- 1.3.2D.2 Incentive Program — Chattanooga, TN.- 1.3.2D.3 Status of TVA SHAC Efforts.- 1.3.2E Public Service Electric & Gas.- 1.3.3 Additional Input From Other Utilities.- 1.3.3A Carolina Power & Light Company.- 1.3.3B Florida Power Corporation.- 1.3.3C Wisconsin Power & Light Company.- 1.3.3D Georgia Power Company.- 1.3.4 Lessons Learned and Conclusions.- 1.4 Solar-Thermal Electric Power.- 1.4.1 Introduction.- 1.4.2 Overview of Utility Activity.- 1.4.3 Central Receivers.- 1.4.3A Central-Receiver Repowering Studies.- 1.4.3A.1 Public Service Company of New Mexico Proposal.- 1.4.3A.2 Other Central-Receiver Repowering Proposals.- 1.4.3B Solar One.- 1.4.3B.1 Plant Description.- 1.4.3B.2 Project Funding and Costs.- 1.4.3B.3 Milestones and Status.- 1.4.3B.4 Achievement of Design Goals.- 1.4.3B.5 Energy Production.- 1.4.3B.6 Operating Availability.- 1.4.3B.7 Parasitic Power Consumption.- 1.4.3B.8 Startup and Shutdown.- 1.4.3B.9 Operation and Maintenance.- 1.4.3B.10 Receiver System.- 1.4.3B.11 Collector System.- 1.4.3B.12 Thermal Storage System.- 1.4.3B.13 Control System.- 1.4.3B.14 Summary.- 1.4.3C Molten-Salt Electric Experiment (MSEE).- 1.4.3C.1 Project Description.- 1.4.3C.2 Project Results.- 1.4.3D Molten Salt Subsystem/Component Test Experiment (MSS/CTE).- 1.4.3D.1 Project Description.- 1.4.3D.2 Project Results.- 1.4.3E Large Scale Conceptual Design Studies/Proposals.- 1.4.3E.1 SCE Solar 100 Proposal.- 1.4.3E.2 APS/PG&E Conceptual Designs.- 1.4.3E.3 The PHOEBUS Project.- 1.4.3F Additional Utility Perspectives on Central Receivers.- 1.4.3F.1 Arizona Public Service.- 1.4.3F.2 San Diego Gas and Electric.- 1.4.3F.3 Public Service Company of New Mexico.- 1.4.3F.4 Texas Utilities Electric Company.- 1.4.4 Distributed Receiver Technology.- 1.4.4A Georgia Power Company’s Shenandoah Project.- 1.4.4A.1 Plant Description.- 1.4.4A.2 Project Results.- 1.4.4A.3 Major Accomplishments.- 1.4.4A.4 Lessons Learned.- 1.4.4B LaJet Solarplant 1.- 1.4.4C Vanguard I.- 1.4.4C.1 Project Description.- 1.4.4C.2 Project Results.- 1.4.4D MDC/USAB Dish-Stirling System Tests.- 1.4.4D.1 Description.- 1.4.4D.2 Test Results.- 1.4.4D.3 Summary of SCE Experience.- 1.4.4D.4 Summary of Georgia Power Experience.- 1.4.4D.5 Nevada Power Experience.- 1.4.4E Solar Electric Generating System (SEGS).- 1.4.4E.1 Plant Descriptions.- 1.4.4E.2 Purpose and Participants.- 1.4.4E.3 System Design.- 1.4.4E.4 Operating Results.- 1.4.4E.5 Summary.- 1.4.4F Crosbyton Fixed-Bowl System.- 1.4.5 Solar Ponds.- 1.4.5A Structure of a Salt Gradient Pond.- 1.4.5B Utility Activity in Solar Ponds.- 1.4.5B.1 Tennessee Valley Authority.- 1.4.5B.2 Los Angeles Department of Water and Power.- 1.4.5B.3 Southern California Edison.- 1.4.5B.4 El Paso Electric.- 1.4.5C Feasibility of Solar Ponds for Power Generation.- 1.4.5D EPRI Solar Thermal Program.- 1.4.6 Summary and Conclusions About Solar Thermal Power.- 1.5 Wind Power.- 1.5.1 History of Wind Power Development.- 1.5.1A Early Activity.- 1.5.1B Developments Since 1973.- 1.5.2 Wind Power Technology Status.- 1.5.3 Experiences of Individual Utilities.- 1.5.3A Pacific Gas &: Electric Company.- 1.5.3A.1 Altamont Wind Power Performance.- 1.5.3A.2 Performance of PG&E Owned and Operated MOD-2.- 1.5.3A.3 Coincidence of Wind Plant Output with System Demand.- 1.5.3A.4 The Wind Resource in PG&E’s Service Territory.- 1.5.3A.5 Wind Turbine Array Effects Project.- 1.5.3B Southern California Edison.- 1.5.3C Hawaiian Electric Company.- 1.5.3C.1 MOD-OA Experiment Results.- 1.5.3C.2 Resource and Feasibility Assessments.- 1.5.3C.3 Wind Power Station Development Program.- 1.5.3C.4 Utility Interface Operating Experience.- 1.5.3D Bonneville Power Administration.- 1.5.3D.1 Wind Resource and Siting Assessments.- 1.5.3D.2 MOD-2 Demonstration at Goodnoe Hills.- 1.5.3D.3 Cape Blanco Wind Farm Feasibility Study.- 1.5.3D.4 Power Electronic Applications to Wind Power.- 1.5.3D.5 Lessons Learned.- 1.5.3E Northern States Power Company.- 1.5.3E.1 Wind Resource Assessment Program.- 1.5.3E.2 Holland Wind Power Plant.- 1.5.3E.3 Small Wind Turbine Assessment.- 1.5.3F Santa Clara Electric Department.- 1.5.3F.1 Altamont Wind Power Plant.- 1.5.3F.2 Benicia Ranch Wind Power Development.- 1.5.3F.3 Sierra Nevada Site.- 1.5.3F.4 Lessons Learned.- 1.5.3F.5 Future Directions.- 1.5.3G Green Mountain Power.- 1.5.3G.1 Effort to Participate in DOE Wind Monitoring Program.- 1.5.3G.2 Assessment of Distributed Wind Power Systems.- 1.5.3G.3 Mount Equinox Project.- 1.5.3H Experiences of Other Utilities.- 1.5.3H.1 Carolina Power & Light.- 1.5.3H.2 Detroit Edison.- 1.5.3H.3 Northeast Utilities Service Company.- 1.5.3H.4 Long Island Lighting Company.- 1.5.3H.5 Public Service Electric & Gas.- 1.5.3H.6 Virginia Power.- 1.5.3H.7 Wisconsin Power & Light Company.- 1.5.4 EPRI Wind Program.- 1.5.5 Utility Industry Wind Interest Group.- 1.5.6 Summary and Conclusions About Wind Power.- 1.6 Photovoltaics.- 1.6.1 Overview of Electric Utility Activities in PV.- 1.6.2 Field Experience with Bulk Power System Installations.- 1.6.2A Lugo PV Power Plant.- 1.6.2B Carrisa Plains PV Plant.- 1.6.2B.1 Plant Description.- 1.6.2B.2 Plant Performance.- 1.6.2B.3 Operation & Maintenance.- 1.6.2C SMUD PV1 and PV2.- 1.6.2D Austin Photovoltaic Plant.- 1.6.2D.1 Plant Performance.- 1.6.2D.2 Reliability.- 1.6.2D.3 Capacity Factor.- 1.6.2D.4 System Coincidence.- 1.6.2D.5 Maintenance Costs.- 1.6.2E Arizona Public Service Company’s Sky Harbor Plant.- 1.6.3 Other Utility-Scale Experimental Installations.- 1.6.3A PVUSA.- 1.6.3A.1 PVUSA Objectives and Scope.- 1.6.3A.2 Participants.- 1.6.3A.3 Schedule.- 1.6.3B APS Solar Test and Research Center.- 1.6.3B.1 Facility Description.- 1.6.3B.2 Preliminary Results.- 1.6.3C Alabama Power Company.- 1.6.3C.1 Resource Monitoring.- 1.6.3C.2 PV Manufacturing Facility.- 1.6.3C.3 PV Demonstration Plant Construction.- 1.6.3C.4 Project Results.- 1.6.3D Florida Power Corporation’s “Solar Progress” PV Array.- 1.6.3E Florida Power &: Light’s Flagami Substation Experiment.- 1.6.3F Platte River Power Authority.- 1.6.3F.1 Assessment of Colorado’s Solar Resource.- 1.6.3F.2 Project Feasibility.- 1.6.3F.3 System Costs.- 1.6.3F.4 Preliminary Results.- 1.6.4 Utility Customer-Size PV Installations.- 1.6.4A New England Electric Residential PV.- 1.6.4A.1 Photovoltaic Inverter Voltage Excursion Research Project.- 1.6.4A.2 PV Inverter Harmonic Baseline Monitoring Research Project.- 1.6.4A.3 PV Generation Effects Research Project.- 1.6.4A.4 Overall Project Results.- 1.6.4B SDG&E Laguna Del Mar Project.- 1.6.4B.1 Project Description.- 1.6.4B.2 Project Results.- 1.6.4C Detroit Edison PV Demonstration Project.- 1.6.4D LADWP Optimum Energy House.- 1.6.4E MG&E’s Goodwill PV Project.- 1.6.4F Philadelphia Electric PV Test Site.- 1.6.4F.1 Project Description.- 1.6.4F.2 Experience with Inverters.- 1.6.4F.3 Experience with Module Array.- 1.6.4F.4 Phase Two Activities.- 1.6.4G Virginia Power Integrated Solar Test Arrays.- 1.6.4G.1 Operating Comparisons.- 1.6.4G.2 Reliability.- 1.6.4G.3 Conclusions.- 1.6.5 Utility Application and Integration Assessment.- 1.6.5A PG&E Evaluation of Utility-Owned Distributed PV.- 1.6.5B Salt River Project Power Quality Testing.- 1.6.6 Additional Input From Utilities.- 1.6.6A Public Service Electric and Gas.- 1.6.6B Philadelphia Electric Company.- 1.6.6C Wisconsin Electric Power Company.- 1.6.7 Key Issues in the Development, Introduction, and Use of PV Power Systems.- 1.6.7A PV Module Cost/Efficiency Targets.- 1.6.7B U.S. Bulk Power Markets.- 1.6.7C PV Land Requirements.- 1.6.7D Intermittency of Insolation Availability.- 1.6.7E Early Cost-Effective PV Applications.- 1.6.7F Technical Issues.- 1.6.7F.1 Array-Related Issues.- 1.6.7F.2 Power Conditioning.- 1.6.7F.3 Balance-of-System Costs.- 1.6.8 Small System BOS Issues and Outlook.- 1.6.9 EPRI PV Program.- 1.6.10 Summary and Prospects.- 1.7 Other Solar Technologies.- 1.7.1 Utility Activity in Other Solar Technologies.- 1.7.2 Process Heat.- 1.7.3 OTEC.- 1.7.3A Utility Involvement in OTEC.- 1.7.3A.1 Florida Power Corporation.- 1.7.3A.2 Hawaiian Electric Company.- 1.7.3A.3 Puerto Rico Electric Power Authority.- 1.7.3B State-of-the-Art Study Results.- 1.8 Summary and Conclusions.- 1.8.1 Overall Summary.- 1.8.1A Solar Heating and Cooling.- 1.8.1B Solar-Thermal Electric Power.- 1.8.1C Wind Power.- 1.8.1D Photovoltaics.- 1.8.1E Solar Thermal Process Heat.- 1.8.1F OTEC.- 1.8.2 Overall Conclusions.- 1.8.3 Acknowledgements.- References.- 1.8.4 Publications of the Solar Power Program, Storage and Renewables Department, Generation and Storage Division, Electric Power Research Institute.- 1.8.5 List of Acronyms.- 2 The Status of Solar Thermal Electric Technology.- 2.1 Abstract.- 2.2 Introduction.- 2.2.1 Background.- 2.2.2 Solar Thermal Electric System Concepts.- 2.2.3 Objectives.- 2.2.4 Approach.- 2.2.4A Technology Status.- 2.2.4B Expected Energy Costs.- 2.2.4C Development Requirements.- 2.3 The Central Receiver System.- 2.3.1 System Concepts.- 2.3.2 Component Development.- 2.3.2A Heliostats.- 2.3.2A.1 Glass/Metal Heliostats.- 2.3.2A.2 Stretched Membrane Heliostats.- 2.3.2B Receivers.- 2.3.2B.1 Water/Steam Receivers.- 2.3.2B.2 Advanced Heat Transfer Fluid Receivers.- 2.3.2B.3 Direct Absorption Receiver.- 2.3.2C Thermal Storage.- 2.3.2D Other Subsystems.- 2.3.3 First Generation System Experiments.- 2.3.3A Solar One.- 2.3.3A.1 Plant Description.- 2.3.3A.2 Performance.- 2.3.3A.3 Significant Incidents.- 2.3.3A.4 Lessons Learned.- 2.3.3A.5 Summary.- 2.3.3B CESA-1.- 2.3.3B.1 Plant Description.- 2.3.3B.2 Project Results.- 2.3.3C EURELIOS.- 2.3.3C.1 Plant Description.- 2.3.3C.2 Project Results.- 2.3.3D Summary of First Generation System Experiments.- 2.3.4 Advanced System Experiments.- 2.3.4A The Molten Salt Electric Experiment.- 2.3.4A.1 Plant Description.- 2.3.4A.2 Performance.- 2.3.4A.3 Significant Incidents.- 2.3.4A.4 Lessons Learned.- 2.3.4A.5 Summary.- 2.3.4B Molten Salt Subsystem/Component Test Experiment.- 2.3.4B.1 Description.- 2.3.4B.2 Performance.- 2.3.4B.3 Significant Incidents.- 2.3.4B.4 Lessons Learned.- 2.3.4B.5 Summary.- 2.3.4C THEMIS.- 2.3.4C.1 Plant Description.- 2.3.4C.2 Performance.- 2.3.4C.3 Significant Incidents.- 2.3.4C.4 Lessons Learned.- 2.3.4C.5 Summary.- 2.3.4D International Energy Agency — Central Receiver System.- 2.3.4D.1 Plant Description.- 2.3.4D.2 Performance.- 2.3.4D.3 Significant Incidents.- 2.3.4D.4 Lessons Learned.- 2.3.4D.5 Summary.- 2.3.4E Summary of Advanced System Experiments.- 2.3.5 Reference System Selection.- 2.3.5A System Studies.- 2.3.5A.1 A Handbook for Solar Central Receiver Design.- 2.3.5A.2 Characterization of Solar Thermal Concepts for Electricity Generation.- 2.3.5A.3 The PHOEBUS Project.- 2.3.5A.4 Utility Solar Central Receiver Study.- 2.3.5B Reference Central Receiver Design Concept.- 2.3.6 Central Receiver Technology Status.- 2.3.6A Technical.- 2.3.6A.1 Central Receiver System.- 2.3.6A.2 Heliostats.- 2.3.6A.3 Receiver.- 2.3.6A.4 Thermal Storage.- 2.3.6A.5 Power Conversion and Balance of Plant.- 2.3.6A.6 Control.- 2.3.6B Performance.- 2.3.7 Energy Costs.- 2.3.7A Methodology.- 2.3.7B Costs.- 2.3.7B.1 Lower Bound Estimate to System Cost.- 2.3.7B.2 Upper Bound Estimate to System Cost.- 2.3.7C Performance.- 2.3.7C.1 Upper Bound Estimate for Annual Efficiency.- 2.3.7C.2 Lower Bound Estimate for Annual Efficiency.- 2.3.7D Results.- 2.3.8 Development Requirements.- 2.3.8A Major Technical Issues.- 2.3.8B Reference Development Program.- 2.3.8B.1 Development Phase.- 2.3.8B.2 Scaleup and Demonstration Phase.- 2.3.8B.3 Duration and Cost.- 2.3.9 Conclusions.- 2.4 Dish Systems.- 2.4.1 System Concepts.- 2.4.1A Central Generation.- 2.4.1B Distributed Generation.- 2.4.2 Component Development.- 2.4.2A Dish Concentrators.- 2.4.2A.1 First Generation Concentrators.- 2.4.2A.2 Second Generation Concentrators.- 2.4.2A.3 Advanced Concentrators.- 2.4.2B Engines for Distributed Generation.- 2.4.2B.1 Stirling Cycle Engines.- 2.4.2B.2 Other Engines for Distributed Generation.- 2.4.3 System Experiments with Central Power Generation.- 2.4.3A Shenandoah Solar Total Energy Project.- 2.4.3A.1 Plant Description.- 2.4.3A.2 Performance.- 2.4.3A.3 Significant Incidents.- 2.4.3A.4 Lessons Learned.- 2.4.3A.5 Major Accomplishments.- 2.4.3B Sulaibyah Solar Power Station.- 2.4.3B.1 Plant Description.- 2.4.3B.2 Performance.- 2.4.3B.3 Significant Incidents.- 2.4.3B.4 Summary.- 2.4.3C Other Systems.- 2.4.3C.1 Solarplant 1.- 2.4.3C.2 White Cliffs.- 2.4.3D Summary of System Experiments with Central Power Generation.- 2.4.4 System Experiments with Distributed Power Generation.- 2.4.4A Vanguard I.- 2.4.4 A. 1 Description.- 2.4.4A.2 Performance.- 2.4.4A.3 Maintenance.- 2.4.4A.4 Significant Incidents.- 2.4.4A.5 Summary.- 2.4.4B MDC/USAB Dish Stirling System.- 2.4.4B.1 Description.- 2.4.4B.2 Project Results.- 2.4.5 Reference System Selection.- 2.4.5A Central versus Distributed Power Generation.- 2.4.5B Reference Dish System Design Concept.- 2.4.6 Energy Costs.- 2.4.6A MDC/USAB Commercialization Study.- 2.4.6B Costs.- 2.4.6B.1 Lower Bound Estimate to System Cost.- 2.4.6B.2 Upper Bound Estimate to System Cost.- 2.4.6C Performance.- 2.4.6C.1 Estimate of Upper Bound of Annual Efficiency.- 2.4.6C.2 Estimate of Lower Bound of Annual Efficiency.- 2.4.6D Results.- 2.4.7 Development Requirements 345.- 2.4.7A Technology Status.- 2.4.7A.1 MDC/USAB System.- 2.4.7A.2 Concentrators.- 2.4.7A.3 Advanced Stirling Engines.- 2.4.7B Priorities.- 2.4.7C Development Plan Outline.- 2.4.7C.1 Phase I, Stirling Engine Evaluation and Selection.- 2.4.7C.2 Phase II, Module Development.- 2.4.7C.3 Phase III, Multi-Module System.- 2.4.7C.4 Duration and Cost.- 2.5 Trough Systems.- 2.5.1 System Definition.- 2.5.2 Development Background.- 2.5.2A Research and Development.- 2.5.2B Modular Industrial Solar Retrofit (MISR).- 2.5.2C Industrial Process Heat Program.- 2.5.2D Coolidge Solar Powered Irrigation Project.- 2.5.2D.1 Plant Description.- 2.5.2D.2 Performance.- 2.5.2D.3 Significant Incidents.- 2.5.2D.4 Summary.- 2.5.2E International Energy Agency Distributed Collector System (IEA-DCS).- 2.5.2E.1 Plant Description.- 2.5.2E.2 Performance.- 2.5.2E.3 Significant Incidents.- 2.5.2E.4 Lessons Learned.- 2.5.2E.5 Summary.- 2.5.3 Solar Electric Generating System (SEGS).- 2.5.3A Plant Descriptions.- 2.5.3B Performance.- 2.5.3C Significant Incidents.- 2.5.3D Lessons Learned.- 2.5.4 Energy Costs.- 2.5.4A Costs.- 2.5.4A.1 Lower Bound to System Cost.- 2.5.4A.2 Upper Bound to System Cost.- 2.5.4B Performance.- 2.5.4B.1 Lower Bound for Annual Efficiency.- 2.5.4B.2 Upper Bound for Annual Efficiency.- 2.5.4C Results.- 2.5.5 Conclusions.- 2.6 System Comparison.- 2.6.1 Qualitative Comparison.- 2.6.2 Performance.- 2.6.3 Summary.- 2.7 Summary and Conclusions.- 2.7.1 The Central Receiver.- 2.7.2 Parabolic Dish Systems.- 2.7.3 Parabolic Trough Systems.- 2.7.4 Overall Conclusion.- References.- 3 High Efficiency III–V Solar Cells.- 3.1 Abstract.- 3.2 Introduction.- 3.3 Single-Junction Crystalline Cells.- 3.3.1 Bulk GaAs Solar Cells.- 3.3.1A Heteroface Cells.- 3.3.1B Shallow Homojunction Cells.- 3.3.1C Heterostructure Cells.- 3.3.2 Thin-Film GaAs Solar Cells.- 3.3.2A CLEFT Technique.- 3.3.2B GaAs Single-Junction Cells on Ge and Si Substrate.- 3.4 Multijunction Crystalline Cells.- 3.4.1 Prospects for High-Efficiency Modules.- 3.4.2 Advanced Concepts for Module Efficiencies Over 30%.- 3.4.3 Mechanically-Stacked Multijunction Cells.- 3.4.3A GaAs Mechanically Stacked on Si.- 3.4.3B GaAs Mechanically Stacked on CuInSe2.- 3.4.3C InGaAs Bottom Cells.- 3.4.3D GaAs Mechanically Stacked on Ge.- 3.4.3E GaAsP on GaAsSb.- 3.4.4 Monolithic Multifunction Cells.- 3.4.4A GaAs Bottom Cells.- 3.4.4B AlGaAs Grown on GaAs.- 3.4.4C GalnP Grown on GaAs.- 3.4.4D Ge Bottom Cells.- 3.4.4E GaAs Grown on Ge.- 3.4.4F Si Bottom Cells.- 3.4.4G GaAs Grown on Si.- 3.4.4H GaAsP Grown on Si.- 3.4.4I InGaAs Bottom Cells.- 3.5 InP Solar Cells.- 3.5.1 Homojunction Solar Cells.- 3.5.2 Heterojunction Solar Cells.- 3.5.3 Radiation Effects.- 3.6 Conclusion.- References.- 4 High-Efficiency Silicon Solar Cells.- 4.1 Introduction.- 4.2 Basic Cell Operation.- 4.2.1 The Semiconductor Device Equations.- 4.2.2 An Integral Approach to the Terminal Current.- 4.2.2A Differential Method.- 4.2.2B Integral Method.- 4.2.3 The Terminal Voltage.- 4.2.4 Carrier Photogeneration.- 4.2.5 Sources of Recombination.- 4.2.5A Diffusion Region Recombination.- 4.2.5B Recombination in the Base.- 4.2.5C Surface Recombination.- 4.2.6 Simplified Device Operation — The Narrow-Base Cell.- 4.2.6A Current-Voltage Characteristics.- 4.2.6B Efficiency and the Maximum Power Point.- 4.2.7 Limit Efficiencies.- 4.3 The Physical Details of Recombination and Transport.- 4.3.1 Introduction.- 4.3.2 Transport and Recombination in Doped Regions.- 4.3.3 Surface Recombination.- 4.3.4 Auger Recombination in High Level Injection.- 4.4 Cell Design Engineering.- 4.4.1 Maximizing Photogeneration.- 4.4.2 Effects on Cell Performance.- 4.4.3 Emitters: Optimizing the Diffused Regions in the Cell.- 4.4.4 Minimizing Emitter Recombination.- 4.4.5 Specific Design Examples.- References.- 5 CuInSe2 and CdTe: Scale-up for Manufacturing.- 5.1 Introduction.- 5.2 CuInSe2.- 5.2.1 Selenization to Form CuInSe2 Films.- 5.2.1A History and Present Status.- 5.2.1A.1 Sputtering.- 5.2.1A.2 Electroplating.- 5.2.1A.3 Evaporation.- 5.2.1B Cell Structure.- 5.2.1C Process Description.- 5.2.1C.1 Sputtering of Cu-In.- 5.2.1C.2 Electroplating of Cu-In.- 5.2.1C.3 Evaporation of Cu-In.- 5.2.1C.4 Selenization.- 5.2.1D R&D Issues.- 5.2.1D.1 Materials.- 5.2.1D.2 Deposition Rate.- 5.2.1D.3 Module Definition Issues.- 5.2.1D.4 Yield/Uniformity.- 5.2.1D.5 Capital Equipment.- 5.2.1D.6 Labor.- 5.2.1D.7 Power Needs.- 5.2.1D.8 Continuous Processing.- 5.2.1D.9 Safety and Waste Disposal.- 5.2.1E Discussion of R&D Issues.- 5.2.1F Physical Vapor Deposition of CuInSe2 Films.- 5.2.1G History and Present Status.- 5.2.1H Cell Structures.- 5.2.1I Process Description.- 5.2.1I.1 Evaporation.- 5.2.1I.2 Reactive Sputtering.- 5.2.1I.3 Annealing.- 5.2.1J Problems and R&D Issues.- 5.2.1J.1 Materials.- 5.2.1J.2 Deposition Rate.- 5.2.1J.3 Yield/ Uniformity.- 5.2.1J.4 Capital Equipment and Continuous Processing.- 5.2.1J.5 Power Needs.- 5.2.1J.6 Safety and Waste Disposal.- 5.2.1K Discussion of R&D Issues.- 5.2.2 CuInSe2: Other Deposition Processes.- 5.2.2A Electrodeposition.- 5.2.2A.1 Present Status.- 5.2.2B Sputtering.- 5.2.2C Chemical Spraying.- 5.2.2D Evaporation.- 5.2.2E Screen Printing.- 5.2.2F Sintering.- 5.2.2G Layer Annealing.- 5.2.3 Other Layers Used in CuInSe2 Devices.- 5.2.3A History, Present Status, and Process Description.- 5.2.3A.1 Ohmic Back-Contacts.- 5.2.3A.2 Window Materials.- 5.2.3A.3 CdS.- 5.2.3A.4 ZnCdS.- 5.2.3A.5 ZnO.- 5.2.3A.6 ZnSe.- 5.2.3B Problems and R&D Issues.- 5.2.3B.1 Materials.- 5.2.3B.2 Deposition Rate.- 5.2.3B.3 Capital Equipment and Power Needs.- 5.2.3B.4 Continuous Processing.- 5.2.3B.5 Safety and Waste Disposal.- 5.2.3C Discussion of R&D Issues.- 5.3 CdTe.- 5.3.1 Electrodeposition.- 5.3.1A History.- 5.3.1B Present Status.- 5.3.1C Cell Structures.- 5.3.1D Process Description.- 5.3.1E Problems and Issues.- 5.3.1E.1 Materials.- 5.3.1E.2 Deposition Rate.- 5.3.1E.3 Module Definition.- 5.3.1E.4 Yield and Uniformity.- 5.3.1E.5 Capital Equipment.- 5.3.1E.6 Labor (O&M).- 5.3.1E.7 Power Needs.- 5.3.1E.8 Bath Stability.- 5.3.1E.9 Safety and Waste Disposal.- 5.3.1F Discussion/R&D Issues.- 5.3.2 Chemical Spray of CdTe.- 5.3.2A History and Present Status.- 5.3.2B Cell Structure.- 5.3.2C Problems and Issues.- 5.3.2C.1 Materials.- 5.3.2C.2 Module Definition Issues.- 5.3.2C.3 Uniformity and Yield.- 5.3.2C.4 Deposition Rate.- 5.3.2C.5 Capital Equipment.- 5.3.2C.6 Labor, Power Needs, and Continuous Processing.- 5.3.2C.7 Safety and Waste Disposal.- 5.3.2D Discussion/R&D Issues.- 5.3.3 Screen Printing/Sintering.- 5.3.3A History and Present Status.- 5.3.3B Cell Structure.- 5.3.3C Process Description.- 5.3.3D Problems and Issues.- 5.3.3D.1 Materials.- 5.3.3D.2 Module Definition Issues.- 5.3.3D.3 Processing Issues.- 5.3.3D.4 Safety and Waste Disposal.- 5.3.3E Discussion/R&D Issues.- 5.3.4 Noncommercial Methods of Fabricating CdTe.- 5.3.4A Cell Structure.- 5.3.4B CSS History and Present Status.- 5.3.4C CSS Process Description.- 5.3.4D CSS Problems and Issues.- 5.3.4D.1 CSS Materials.- 5.3.4D.2 CSS Module Definition Issues.- 5.3.4D.3 CSS Uniformity, Yield, and Deposition Rate.- 5.3.4D.4 CSS Capital Equipment and Continuous Processing.- 5.3.4D.5 CSS Safety and Waste Disposal.- 5.3.4E CSS Discussion/R&D Issues.- 5.3.4F CVD and MOCVD: History and Present Status.- 5.3.4G CVD and MOCVD: Process Descriptions.- 5.3.4H CVD and MOCVD: Problems and Issues.- 5.3.4H.1 CVD and MOCVD: Materials.- 5.3.4H.2 CVD and MOCVD: Uniformity, Yield, and Deposition Rate.- 5.3.4H.3 CVD and MOCVD: Safety and Waste Disposal.- 5.3.4I CVD and MOCVD: Discussion/R&D Issues.- 5.3.5 CdTe Devices: Other Layers.- 5.3.5A History, Present Status and Process Description.- 5.3.5A.1 Window Materials and Heterojunction Partners.- 5.3.5A.2 SnO2.- 5.3.5A.3 Cadmium Sulfide.- 5.3.5A.4 Back Contacts.- 5.3.5B Problems and Issues.- 5.3.5B.1 Materials.- 5.3.5B.2 Deposition Rate.- 5.3.5C Discussion/R&D Issues.- References.- Word Index.
1997-2024 DolnySlask.com Agencja Internetowa