Phytohormones are known to affect the growth and development of plant directly as well as indirectly. Salicylic acid (SA) is a phenolic phytohormone which induces systemic resistance in plants and also regulates defence responses. The derivatives of SA also play an important role in the regulation of various physiological and developmental processes in plants under normal and stressful environmental conditions. SA regulates seed germination, photosynthesis, ethylene biosynthesis, enzyme activities, nutrition, flowering, legume nodulation and overall growth and development of plant. Recently,...
Phytohormones are known to affect the growth and development of plant directly as well as indirectly. Salicylic acid (SA) is a phenolic phytohormone w...
This edited book focuses on ROS synthesis, potential applications, toxicity, and preservations. It explores the recently proposed hormonal response and biomolecules targeted in regulation of ROS. Chapters cover resistance and susceptibility to plant pathogen, strategies involving phytoprotectants, and life span of nematode affected by ROS. This book includes a compilation of recently written, integrated, and illustrated reviews describing latest information on ROS. Chapters incorporate both theoretical and practical aspects of plant ROS.Reactive oxygen species (ROS) are key signaling...
This edited book focuses on ROS synthesis, potential applications, toxicity, and preservations. It explores the recently proposed hormonal response an...
This book presents recent developments involving the role of nanoparticles on stress tolerance. In particular, nanoparticles have the potential to provide effective solutions to the multiple agriculture-related problems. Nanoparticles present enhanced reactivity and thus better effectiveness when compared to their bulkier counterparts due to their higher surface-to-volume ratio.
This book presents recent developments involving the role of nanoparticles on stress tolerance. In particular, nanoparticles have the potential to pro...