Computational and Instrumental Methods in EPR is devoted to both instrumentation and computation aspects of EPR, while addressing applications such as spin relaxation time measurements. However, this is the first comprehensive volume to offer practical, non-invasive spectroscopic methods of analyzing the rheology of biopolymers: comparative studies of polymer fluidity using traditional methods (e.g. viscosity) and nuclear magnetic resonance.
Computational and Instrumental Methods in EPR is devoted to both instrumentation and computation aspects of EPR, while addressing applications such...
From the early examples of what was to be called MRI, extending the te- nique to higher fields than those of less than 0. 1 T used in the first large-volume instruments was a goal, but the way there was unclear. The practical success of large superconducting magnets was a surprise, and the astonishment continued as they developed fields from 0. 3 T to 0. 6 T to 1. 5 T, and even more, up to the now common 3T systems, and a few 4T machines, and now to about 100 times the fields used in the first medium- and large-bore devices. In the early machines, low radiofrequencies of 4 MHz or so meant...
From the early examples of what was to be called MRI, extending the te- nique to higher fields than those of less than 0. 1 T used in the first large-...
Metalloproteins comprise approximately 30% of all known proteins, and are involved in a variety of biologically important processes, including oxygen transport, biosynthesis, electron transfer, biodegradation, drug metabolism, proteolysis, and hydrolysis of amides and esters, environmental sulfur and nitrogen cycles, and disease mechanisms. EPR spectroscopy has an important role in not only the geometric structural characterization of the redox cofactors in metalloproteins but also their electronic structure, as this is crucial for their reactivity. The advent of x-ray crystallographic...
Metalloproteins comprise approximately 30% of all known proteins, and are involved in a variety of biologically important processes, including oxyg...
Biomedical EPR Part B focuses on applications of EPR techniques and instrumentation, with applications to dynamics. The book celebrates the 70th birthday of Prof. James S. Hyde, Medical College of Wisconsin, and his contributions to this field. Chapters are written to provide introductory material for new-comers to the field that lead into up-to-date reviews that provide perspective on the wide range of questions that can be addressed by EPR.
Key Features: EPR Techniques including Saturation Recovery, ENDOR, ELDOR, and Saturation...
Biomedical EPR Part B focuses on applications of EPR techniques and instrumentation, with applications to dynamics. The book celeb...
Electron magnetic resonance in the time domain has been greatly facilitated by the introduction of novel resonance structures and better computational tools, such as the increasingly widespread use of density-matrix formalism. This second v- ume in our series, devoted both to instrumentation and computation, addresses - plications and advances in the analysis of spin relaxation time measurements. Chapters 1 deals with the important problem of measuring spin relaxation times over a broad temporal range. The author, Dr. Sushil Misra, has worked on a wide variety of solutions to problems in this...
Electron magnetic resonance in the time domain has been greatly facilitated by the introduction of novel resonance structures and better computational...
We are again proud to present an excellent volume of contemporary topics in NMR and EPR to the biological community. The philosophy behind the volume and the presentation of each chapter remains at the high level reflected in our earlier volumes: to be current, pedagogical, and critical. The first chapters, as always, address a subject related to in-vivo biology. Gabby Elgavish addresses NMR spectroscopy of the intact heart. lain Campbell and colleagues present a state-of-the-art description of NMR methods for probing enzyme kinetics in intact cells and tissues. Klaus Mobius and Wolfgang...
We are again proud to present an excellent volume of contemporary topics in NMR and EPR to the biological community. The philosophy behind the volume ...
We have now reached our sixth volume in a series which has somewhat unintentionally become an annual event. While we still intend to produce a volume only if a suitable number of excellent chapters in the forefront of biological magnetic resonance are available, our philosophy is to present a pedagogical yet critical description and review of selected topics in mag netic resonance of current interest to the community of biomedical scien tists. This volume fulfills our goals well. As always, we open the volume with a chapter which directly addresses an in vivo biological problem: Phil Bolton's...
We have now reached our sixth volume in a series which has somewhat unintentionally become an annual event. While we still intend to produce a volume ...
In vivo nuclear magnetic and electron spin resonance spectroscopy is concerned, inter alia, with the noninvasive observation of metabolic changes in living systems, including animals and humans. Typically, the physiologi- cal (or pathological) state of an organ or tissue is monitored. This multi- faceted approach was developed during the 1980s. It is still a research technique, but will undoubtedly become a clinical tool. We are proud to present this volume (the eleventh of our series) in which some of the pioneers in this area summarize their contributions and review related literature....
In vivo nuclear magnetic and electron spin resonance spectroscopy is concerned, inter alia, with the noninvasive observation of metabolic changes in l...
Volume 16 marks the beginning of a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. This volume is being followed by Volume 17 with the subtitle Structure Computation and Dynamics in Protein NMR. Volumes 16 and 17 present some of the recent, significant advances in biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volumes some of the world's foremost experts who have provided broad leadership in advancing this field. Volume 16 contains advances in...
Volume 16 marks the beginning of a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. T...
Biological magnetic resonance (NMR and EPR) is a rapidly expanding area of research with much activity in most universities and research institutions. International conferences are held biennially with an increasing number of participants. With the introduction of sophisticated and continuously im proving instrumentation, biological magnetic resonance is approaching the state of a common physical method in biochemical, biomedical, and bio logical research. The lack of monograpbs on the subject had been con spicuous for a long time. This gap started to close only recently. However, because of...
Biological magnetic resonance (NMR and EPR) is a rapidly expanding area of research with much activity in most universities and research institutions....