Computer algebra systems have the potential to revolutionize the teaching of and learning of science. Not only can students work thorough mathematical models much more efficiently and with fewer errors than with pencil and paper, they can also work with much more complex and computationally intensive models. Thus, for example, in studying the flight of a golf ball, students can begin with the simple parabolic trajectory, but then add the effects of lift and drag, of winds, and of spin. Not only can the program provide analytic solutions in some cases, it can also produce numerical solutions...
Computer algebra systems have the potential to revolutionize the teaching of and learning of science. Not only can students work thorough mathematical...
Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text. Additional features: * User-friendly, accessible...
Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer scie...