This book contains articles on stochastic processes (stochastic calculus and Malliavin calculus, functionals of Brownian motions and Levy processes, stochastic control and optimization problems, stochastic numerics, and so on) and their applications to problems in mathematical finance. Examples of topics are applications of Malliavin calculus and numerical analysis to a new simulation scheme for calculating the price of financial derivatives, applications of the asymptotic expansion method in Malliavin calculus to financial problems, semimartingale decompositions under an enlargement of...
This book contains articles on stochastic processes (stochastic calculus and Malliavin calculus, functionals of Brownian motions and Levy processes, s...
Based around recent lectures given at the prestigious Ritsumeikan conference, the tutorial and expository articles contained in this volume are an essential guide for practitioners and graduates alike who use stochastic calculus in finance. Among the eminent contributors are Paul Malliavin and Shinzo Watanabe, pioneers of Malliavin Calculus. The coverage also includes a valuable review of current research on credit risks in a mathematically sophisticated way contrasting with existing economics-oriented articles.
Based around recent lectures given at the prestigious Ritsumeikan conference, the tutorial and expository articles contained in this volume are an ess...
This volume contains the contributions to a conference that is among the most important meetings in financial mathematics. Serving as a bridge between probabilists in Japan (called the Ito School and known for its highly sophisticated mathematics) and mathematical finance and financial engineering, the conference elicits the very highest quality papers in the field of financial mathematics.
This volume contains the contributions to a conference that is among the most important meetings in financial mathematics. Serving as a bridge between...
An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Ito, and H. P. McKean, among others. In this book, Ito discussed a case of a general Markov process with state space S and a specified point a ∈ S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a...
An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion pro...