Since Efron's profound paper on the bootstrap, an enormous amount of effort has been spent on the development of bootstrap, jacknife, and other resampling methods. The primary goal of these computer-intensive methods has been to provide statistical tools that work in complex situations without imposing unrealistic or unverifiable assumptions about the data generating mechanism. The primary goal of this book is to lay some of the foundation for subsampling methodology and related methods.
Since Efron's profound paper on the bootstrap, an enormous amount of effort has been spent on the development of bootstrap, jacknife, and other resamp...
During the second half of the 20th century, Murray Rosenblatt was one of the most celebrated and leading figures in probability and statistics. Among his many contributions, Rosenblatt conducted seminal work on density estimation, central limit theorems under strong mixing conditions, spectral domain methodology, long memory processes and Markov processes. He has published over 130 papers and 5 books, many as relevant today as when they first appeared decades ago. Murray Rosenblatt was one of the founding members of the Department of Mathematics at the University of California at San Diego...
During the second half of the 20th century, Murray Rosenblatt was one of the most celebrated and leading figures in probability and statistics. Amo...
Since Efron's profound paper on the bootstrap, an enormous amount of effort has been spent on the development of bootstrap, jacknife, and other resampling methods. The primary goal of these computer-intensive methods has been to provide statistical tools that work in complex situations without imposing unrealistic or unverifiable assumptions about the data generating mechanism. This book sets out to lay some of the foundations for subsampling methodology and related methods.
Since Efron's profound paper on the bootstrap, an enormous amount of effort has been spent on the development of bootstrap, jacknife, and other resamp...
This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for Non Parametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI and other organizations. M.G. Akritas, S.N. Lahiri and D.N. Politis are the first executive committee members of ISNPS and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay,...
This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for Non Parametric Stati...
The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic...
The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is...