This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham...
This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us expl...
This is an introduction to some geometrie aspects of G-function theory. Most of the results presented here appear in print for the flrst time; hence this text is something intermediate between a standard monograph and a research artic1e; it is not a complete survey of the topic. Except for geometrie chapters (I.3.3, II, IX, X), I have tried to keep it reasonably self contained; for instance, the second part may be used as an introduction to p-adic analysis, starting from a few basic facts wh ich are recalled in IV.l.l. I have inc1uded about forty exercises, most of them giving some...
This is an introduction to some geometrie aspects of G-function theory. Most of the results presented here appear in print for the flrst time; hence t...