• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

de Rham Cohomology of Differential Modules on Algebraic Varieties » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

de Rham Cohomology of Differential Modules on Algebraic Varieties

ISBN-13: 9783764363482 / Angielski / Twarda / 2000 / 214 str.

Yves Andre; Francesco Baldassari; F. Baldassarri
de Rham Cohomology of Differential Modules on Algebraic Varieties André, Yves 9783764363482 Birkhauser - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

de Rham Cohomology of Differential Modules on Algebraic Varieties

ISBN-13: 9783764363482 / Angielski / Twarda / 2000 / 214 str.

Yves Andre; Francesco Baldassari; F. Baldassarri
cena 403,47
(netto: 384,26 VAT:  5%)

Najniższa cena z 30 dni: 385,52
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case of nonconstant coeffi cients: for any algebraic vector bundle .M on X endowed with an integrable regular connection, one has canonical isomorphisms The notion of regular connection is a higher dimensional generalization of the classical notion of fuchsian differential equations (only regular singularities)."

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Topologia
Medical > Medycyna
Mathematics > Geometria
Wydawca:
Birkhauser
Seria wydawnicza:
Progress in Mathematics
Język:
Angielski
ISBN-13:
9783764363482
Rok wydania:
2000
Wydanie:
2001
Numer serii:
000019240
Ilość stron:
214
Waga:
1.10 kg
Wymiary:
23.5 x 15.5
Oprawa:
Twarda
Wolumenów:
01

1 Regularity in several variables.- §1 Geometric models of divisorially valued function fields.- §2 Logarithmic differential operators.- §3 Connections regular along a divisor.- §4 Extensions with logarithmic poles.- §5 Regular connections: the global case.- §6 Exponents.- Appendix A: A letter of Ph. Robba (Nov. 2, 1984).- Appendix B: Models and log schemes.- 2 Irregularity in several variables.- §1 Spectral norms.- §2 The generalized Poincaré-Katz rank of irregularity.- §3 Some consequences of the Turrittin-Levelt-Hukuhara theorem.- §4 Newton polygons.- §5 Stratification of the singular locus by Newton polygons.- §6 Formal decomposition of an integrable connection at a singular divisor.- §7 Cyclic vectors, indicial polynomials and tubular neighborhoods.- 3 Direct images (the Gauss-Manin connection).- §1 Elementary fibrations.- §2 Review of connections and De Rham cohomology.- §3 Dévissage.- §4 Generic finiteness of direct images.- §5 Generic base change for direct images.- §6 Coherence of the cokernel of a regular connection.- §7 Regularity and exponents of the cokernel of a regular connection.- §8 Proof of the main theorems: finiteness, regularity, monodromy, base change (in the regular case).- Appendix C: Berthelot’s comparison theorem on OXDX-linear duals.- Appendix D: Introduction to Dwork’s algebraic dual theory.- 4 Complex and p-adic comparison theorems.- §1 Review of analytic connections and De Rham cohomology.- §2 Abstract comparison criteria.- §3 Comparison theorem for algebraic vs.complex-analytic cohomology.- §4 Comparison theorem for algebraic vs. rigid-analytic cohomology (regular coefficients).- §5 Rigid-analytic comparison theorem in relative dimension one.- §6 Comparison theorem for algebraic vs. rigid-analytic cohomology (irregular coefficients).- §7 The relative non-archimedean Turrittin theorem.- Appendix E: Riemann’s “existence theorem” in higher dimension, an elementary approach.- References.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia