Reuse Methodology Manual for System-on-a-Chip Designs, Third Edition outlines a set of best practices for creating reusable designs for use in an SoC design methodology. These practices are based on the authors' experience in developing reusable designs, as well as the experience of design teams in many companies around the world. Silicon and tool technologies move so quickly that many of the details of design-for-reuse will undoubtedly continue to evolve over time. But the fundamental aspects of the methodology described in this book have become widely adopted and are...
Reuse Methodology Manual for System-on-a-Chip Designs, Third Edition outlines a set of best practices for creating reusable design...
Silicon technology now allows us to build chips consisting of tens of millions of transistors. This technology not only promises new levels of system integration onto a single chip, but also presents significant challenges to the chip designer. As a result, many ASIC developers and silicon vendors are re-examining their design methodologies, searching for ways to make effective use of the vast numbers of gates now available.
Silicon technology now allows us to build chips consisting of tens of millions of transistors. This technology not only promises new levels of system ...
Silicon technology now allows us to build chips consisting of tens of millions of transistors. This technology not only promises new levels of system integration onto a single chip, but also presents significant challenges to the chip designer. As a result, many ASIC developers and silicon vendors are re-examining their design methodologies, searching for ways to make effective use of the huge numbers of gates now available. These designers see current design tools and methodologies as inadequate for developing million-gate ASICs from scratch. There is considerable pressure to keep...
Silicon technology now allows us to build chips consisting of tens of millions of transistors. This technology not only promises new levels of system ...