Since 1992 Finsler geometry, Lagrange geometry and their applications to physics and biology, have been intensive1y studied in the context of a 5-year program called "Memorandum ofUnderstanding," between the University of Alberta and "AL.1. CUZA" University in lasi, Romania. The conference, whose proceedings appear in this collection, belongs to that program and aims to provide a forum for an exchange of ideas and information on recent advances in this field. Besides the Canadian and Romanian researchers involved, the conference benefited from the participation of many specialists from...
Since 1992 Finsler geometry, Lagrange geometry and their applications to physics and biology, have been intensive1y studied in the context of a 5-year...
This monograph is mostly devoted to the problem of the geome trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La grange spaces: Theory and Applications," written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on...
This monograph is mostly devoted to the problem of the geome trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs ...
The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in 76], 96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published 10], 18], 112], 113], ... A large area of applicability of this geometry is...
The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and H...
The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in 76], 96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published 10], 18], 112], 113], ... A large area of applicability of this geometry is...
The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and H...
Asisknown, theLagrangeandHamiltongeometrieshaveappearedrelatively recently 76, 86]. Since 1980thesegeometrieshave beenintensivelystudied bymathematiciansandphysicistsfromRomania, Canada, Germany, Japan, Russia, Hungary, e.S.A. etc. PrestigiousscientificmeetingsdevotedtoLagrangeandHamiltongeome tries and their applications have been organized in the above mentioned countries and a number ofbooks and monographs have been published by specialists in the field: R. Miron 94, 95], R. Mironand M. Anastasiei 99, 100], R. Miron, D. Hrimiuc, H. Shimadaand S.Sabau 115], P.L. Antonelli, R....
Asisknown, theLagrangeandHamiltongeometrieshaveappearedrelatively recently 76, 86]. Since 1980thesegeometrieshave beenintensivelystudied bymathematic...
An introduction to the foundations of mathematics. The use of the constructive method in arithmetic and the axiomatic method in geometry gives a unitary understanding of the backgrounds of geometry, of its development and of its organic link with the study of real numbers and algebraic structures.
An introduction to the foundations of mathematics. The use of the constructive method in arithmetic and the axiomatic method in geometry gives a unita...
Differential-geometric methods are gaining increasing importance in the understanding of a wide range of fundamental natural phenomena. Very often, the starting point for such studies is a variational problem formulated for a convenient Lagrangian. From a formal point of view, a Lagrangian is a smooth real function defined on the total space of the tangent bundle to a manifold satisfying some regularity conditions. The main purpose of this book is to present: (a) an extensive discussion of the geometry of the total space of a vector bundle; (b) a detailed exposition of Lagrange geometry; and...
Differential-geometric methods are gaining increasing importance in the understanding of a wide range of fundamental natural phenomena. Very often, th...