ISBN-13: 9781402015748 / Angielski / Twarda / 2003 / 247 str.
ISBN-13: 9781402015748 / Angielski / Twarda / 2003 / 247 str.
Asisknown, theLagrangeandHamiltongeometrieshaveappearedrelatively recently 76, 86]. Since 1980thesegeometrieshave beenintensivelystudied bymathematiciansandphysicistsfromRomania, Canada, Germany, Japan, Russia, Hungary, e.S.A. etc. PrestigiousscientificmeetingsdevotedtoLagrangeandHamiltongeome tries and their applications have been organized in the above mentioned countries and a number ofbooks and monographs have been published by specialists in the field: R. Miron 94, 95], R. Mironand M. Anastasiei 99, 100], R. Miron, D. Hrimiuc, H. Shimadaand S.Sabau 115], P.L. Antonelli, R. Ingardenand M.Matsumoto 7]. Finslerspaces, whichformasubclassof theclassofLagrangespaces, havebeenthesubjectofsomeexcellentbooks, forexampleby: Yl.Matsumoto 76], M.AbateandG.Patrizio 1], D.Bao, S.S. Chernand Z.Shen 17]andA.BejancuandH.R.Farran 20]. Also, wewould liketopointoutthemonographsofM. Crampin 34], O.Krupkova 72] and D.Opri, I.Butulescu 125], D.Saunders 144], whichcontainpertinentappli cationsinanalyticalmechanicsandinthetheoryofpartialdifferentialequa tions. Applicationsinmechanics, cosmology, theoreticalphysicsandbiology can be found in the well known books ofP.L. Antonelliand T.Zawstaniak 11], G.S. Asanov 14]' S. Ikeda 59]: VI. de LeoneandP.Rodrigues 73]. TheimportanceofLagrangeandHamiltongeometriesconsistsofthefact that variational problems for important Lagrangiansor Hamiltonians have numerous applicationsinvariousfields, such asmathematics, thetheoryof dynamicalsystems, optimalcontrol, biology, andeconomy. Inthisrespect, P.L. Antonelli'sremark isinteresting: "ThereisnowstrongevidencethatthesymplecticgeometryofHamilto niandynamicalsystemsisdeeplyconnectedtoCartangeometry, thedualof Finslergeometry," (seeV.I.Arnold, I.M.GelfandandV.S.Retach 13]). The above mentioned applications have also imposed the introduction x RaduMiron ofthe notionsofhigherorder Lagrangespacesand, ofcourse, higherorder Hamilton spaces. The base manifolds ofthese spaces are bundles ofaccel erations ofsuperior order. The methods used in the construction ofthese geometries are the natural extensions ofthe classical methods used in the edification ofLagrange and Hamilton geometries. These methods allow us to solvean old problemofdifferentialgeometryformulated by Bianchiand Bompiani 94]morethan 100yearsago, namelytheproblemofprolongation ofaRiemannianstructure gdefinedonthebasemanifoldM, tothetangent k bundleT M, k> 1. Bymeansofthissolutionofthe previousproblem, we canconstruct, for thefirst time, goodexamplesofregularLagrangiansand Hamiltoniansofhigherorder.