Three-dimensional (3D) integration is clearly the simplest answer to most of the semiconductor industry s vexing problems: heterogeneous integration and red- tions of power, form factor, delay, and even cost. Conceptually the power, latency, and form factor of a system with a ?xed number of transistors all scale roughly linearly with the diameter of the smallest sphere enclosing frequently interacting devices. This clearly provides the fundamental motivation behind 3D technologies which vertically stack several strata of device and interconnect layers with high vertical interconnectivity. In...
Three-dimensional (3D) integration is clearly the simplest answer to most of the semiconductor industry s vexing problems: heterogeneous integration a...
Three-dimensional (3D) integration is clearly the simplest answer to most of the semiconductor industry s vexing problems: heterogeneous integration and red- tions of power, form factor, delay, and even cost. Conceptually the power, latency, and form factor of a system with a ?xed number of transistors all scale roughly linearly with the diameter of the smallest sphere enclosing frequently interacting devices. This clearly provides the fundamental motivation behind 3D technologies which vertically stack several strata of device and interconnect layers with high vertical interconnectivity. In...
Three-dimensional (3D) integration is clearly the simplest answer to most of the semiconductor industry s vexing problems: heterogeneous integration a...
As semiconductor manufacturers implement copper conductors in advanced interconnect schemes, research and development efforts shift toward the selection of an insulator that can take maximum advantage of the lower power and faster signal propagation allowed by copper interconnects. One of the main challenges to integrating a low-dielectric constant (low-kappa) insulator as a replacement for silicon dioxide is the behavior of such materials during the chemical-mechanical planarization (CMP) process used in Damascene patterning. Low-kappa dielectrics tend to be softer and less chemically...
As semiconductor manufacturers implement copper conductors in advanced interconnect schemes, research and development efforts shift toward the sele...