Total hip arthroplasty, the most commonly performed orthopedic procedure, is used to replace or reconstruct the hip with an artificial joint. Perspectives in Total Hip Arthroplasty outlines developments in technologies and biomaterials used for this procedure, with a focus on the tribological interactions of the materials used.
Part one outlines the history of total hip arthroplasty and goes on to explore advances in techniques and biomaterials. Part two focuses on the tribology of materials used to perform this procedure, explaining the impact of wear on the load-bearing...
Total hip arthroplasty, the most commonly performed orthopedic procedure, is used to replace or reconstruct the hip with an artificial joint. Pe...
Nanotechnology is at the forefront of advances in medicine. Nanomedicine: Technologies and applications provides an important review of this exciting technology and its growing range of applications. After an introduction to nanomedicine, part one discusses key materials and their properties, including nanocrystalline metals and alloys, nanoporous gold and hydroxyapatite coatings. Part two goes on to review nanomedicine for therapeutics and imaging, before nanomedicine for soft tissue engineering is discussed in part three, including organ regeneration, skin grafts, nanotubes and...
Nanotechnology is at the forefront of advances in medicine. Nanomedicine: Technologies and applications provides an important review of this exciting ...
Carbon is light-weight, strong, conductive and able to mimic natural materials within the body, making it ideal for many uses within biomedicine. Consequently a great deal of research and funding is being put into this interesting material with a view to increasing the variety of medical applications for which it is suitable. Diamond-based materials for biomedical applications presents readers with the fundamental principles and novel applications of this versatile material. Part one provides a clear introduction to diamond based materials for medical applications. Functionalization of...
Carbon is light-weight, strong, conductive and able to mimic natural materials within the body, making it ideal for many uses within biomedicine. Cons...
As medical devices become more intricate, with an increasing number of components made from a wide range of materials, it is important that they meet stringent requirements to ensure that they are safe to be implanted and will not be rejected by the human body. Joining and assembly of medical materials and devices provides a comprehensive overview of joining techniques for a range of medical materials and applications. Part one provides an introduction to medical devices and joining methods with further specific chapters on microwelding methods in medical components and the effects of...
As medical devices become more intricate, with an increasing number of components made from a wide range of materials, it is important that they meet ...
Nanomaterial technologies can be used to fabricate high-performance biomaterials with tailored physical, chemical, and biological properties. They are therefore an area of interest for emerging biomedical technologies such as scaffolding, tissue regeneration, and controlled drug delivery. Nanomaterials in tissue engineering explores the fabrication of a variety of nanomaterials and the use of these materials across a range of tissue engineering applications. Part one focuses on the fabrication of nanomaterials for tissue engineering applications and includes chapters on engineering...
Nanomaterial technologies can be used to fabricate high-performance biomaterials with tailored physical, chemical, and biological properties. They are...
Medical tribology can be defined as the science of tribological phenomena in the human body, both those that naturally occur in the tissues or organs and those that arise after implantation of an artificial device, while biomaterials are inert substances designed to be incorporated into living systems. Biomaterials and medical tribology brings together a collection of high quality articles and case studies focussing on new research and developments in these two important fields. The book provides details of the different types of biomaterial available and their applications, including...
Medical tribology can be defined as the science of tribological phenomena in the human body, both those that naturally occur in the tissues or organs ...
Decontamination in Hospitals and Healthcare brings an understanding of decontamination practices and the development of technologies for cleaning and control of infection to a wide audience interested in public health, including healthcare specialists, scientists, students or patients.
Part one highlights the importance and history of decontamination in hospitals and healthcare before exploring the role of standards in decontamination, infection control in Europe, and future trends in the area. Part two focuses on decontamination practices in hospitals and healthcare. It...
Decontamination in Hospitals and Healthcare brings an understanding of decontamination practices and the development of technologies for cle...
Cancer can affect people of all ages, and approximately one in three people are estimated to be diagnosed with cancer during their lifetime. Extensive research is being undertaken by many different institutions to explore potential new therapeutics, and biomaterials technology is now being developed to target, treat and prevent cancer. This unique book discusses the role and potential of biomaterials in treating this prevalent disease. The first part of the book discusses the fundamentals of biomaterials for cancer therapeutics. Chapters in part two discuss synthetic vaccines, proteins...
Cancer can affect people of all ages, and approximately one in three people are estimated to be diagnosed with cancer during their lifetime. Extensive...
Precious metals and semi-precious metals are used for an increasing number of medical applications due to the properties of these metals and their alloys. Precious Metals for Biomedical Applications reviews the properties of precious metals and their resulting applications in medicine.
Part one outlines the fundamentals of precious metals for biomedical applications, discussing their useful properties, such as biocompatibility and corrosion resistance. Part two goes on to provide an overview of the applications of precious metals in biomedicine, including dental,...
Precious metals and semi-precious metals are used for an increasing number of medical applications due to the properties of these metals and their ...
All biomaterials and medical devices are subject to a long list of regulatory practises and policies which must be adhered to in order to receive clearance. This book provides readers with information on the systems in place in the USA and the rest of the world. Chapters focus on a series of procedures and policies including topics such as commercialization, clinical development, general good practise manufacturing and post market surveillance.
Addresses global regulations and regulatory issues surrounding biomaterials and medical devices
Especially useful for smaller...
All biomaterials and medical devices are subject to a long list of regulatory practises and policies which must be adhered to in order to receive clea...