The inverse obstacle scattering problem consists of finding the unknown surface of a body (obstacle) from the scattering ����(����;����;����), where ����(����;����;����) is the scattering amplitude, ����;���� ���� ����² is the direction of the scattered, incident wave, respectively, ����² is the unit sphere in the ℝ³ and k > 0 is the modulus of the wave vector. The scattering data is called non-over-determined if its dimensionality is the same as the one of the unknown object. By...
The inverse obstacle scattering problem consists of finding the unknown surface of a body (obstacle) from the scattering ����(����;...
This book introduces integrals, the fundamental theorem of calculus, initial value problems, and Riemann sums. It introduces properties of polynomials, including roots and multiplicity, and uses them as a framework for introducing additional calculus concepts including Newton's method, L'Hôpital's Rule, and Rolle's theorem. Both the differential and integral calculus of parametric, polar, and vector functions are introduced. The book concludes with a survey of methods of integration, including u-substitution, integration by parts, special trigonometric integrals, trigonometric substitution,...
This book introduces integrals, the fundamental theorem of calculus, initial value problems, and Riemann sums. It introduces properties of polynomials...
This is an introductory book on discrete statistical distributions and its applications. It discusses only those that are widely used in the applications of probability and statistics in everyday life. The purpose is to give a self-contained introduction to classical discrete distributions in statistics. Instead of compiling the important formulas (which are available in many other textbooks), we focus on important applications of each distribution in various applied fields like bioinformatics, genomics, ecology, electronics, epidemiology, management, reliability, etc., making this...
This is an introductory book on discrete statistical distributions and its applications. It discusses only those that are widely used in the...
This is an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, the reader is introduced to techniques used to obtain exact solutions of NPDEs. The chapters include the following topics: Compatibility, Differential Substitutions, Point and Contact Transformations, First Integrals, and Functional Separability. The reader is guided through these chapters and is provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in...
This is an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from...
This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical...
This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on se...
This book reviews the algebraic prerequisites of calculus, including solving equations, lines, quadratics, functions, logarithms, and trig functions. It introduces the derivative using the limit-based definition and covers the standard function library and the product, quotient, and chain rules. It explores the applications of the derivative to curve sketching and optimization and concludes with the formal definition of the limit, the squeeze theorem, and the mean value theorem.
This book reviews the algebraic prerequisites of calculus, including solving equations, lines, quadratics, functions, logarithms, and trig functions. ...
Statistics is the activity of inferring results about a population given a sample. Historically, statistics books assume an underlying distribution to the data (typically, the normal distribution) and derive results under that assumption. Unfortunately, in real life, one cannot normally be sure of the underlying distribution. For that reason, this book presents a distribution-independent approach to statistics based on a simple computational counting idea called resampling. This book explains the basic concepts of resampling, then system atically presents the standard statistical measures...
Statistics is the activity of inferring results about a population given a sample. Historically, statistics books assume an underlying distribution to...
The main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on ℝ+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution ����(����, ����) to the NSP exists for all ���� ≥ 0 and ����(����, ����) = 0).
It is shown that if the initial data ����0(����) ≢ 0, ����(����,����) = 0 and the solution to...
The main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wron...
Atherosclerosis is a pathological condition of the arteries in which plaque buildup and stiffening (hardening) can lead to stroke, myocardial infarction (heart attacks), and even death. Cholesterol in the blood is a key marker for atherosclerosis, with two forms: (1) LDL - low density lipoproteins and (2) HDL - high density lipoproteins. Low LDL and high HDL concentrations are generally considered essential for limited atherosclerosis and good health.
This book pertains to a mathematical model for the spatiotemporal distribution of LDL and HDL in the...
Atherosclerosis is a pathological condition of the arteries in which plaque buildup and stiffening (hardening) can lead to stroke, myocardial in...
Uncertainty is an inseparable component of almost every measurement and occurrence when dealing with real-world problems. Finding solutions to real-life problems in an uncertain environment is a difficult and challenging task. As such, this book addresses the solution of uncertain static and dynamic problems based on affine arithmetic approaches. Affine arithmetic is one of the recent developments designed to handle such uncertainties in a different manner which may be useful for overcoming the dependency problem and may compute better enclosures of the solutions. Further, uncertain...
Uncertainty is an inseparable component of almost every measurement and occurrence when dealing with real-world problems. Finding solutions to ...