This book presents fixed point theory, one of the crucial tools in applied mathematics, functional analysis, and topology, which has been used to solve distinct real-world problems in computer science, engineering, and physics. The authors begin with an overview of the extension of metric spaces. Readers are introduced to general fixed-point theorems while comparing and contrasting important and insignificant metric spaces. The book is intended to be self-contained and serves as a unique resource for researchers in various disciplines.
This book presents fixed point theory, one of the crucial tools in applied mathematics, functional analysis, and topology, which has been used to solv...
This book reviews the construction of elementary systems living in de Sitter (dS) spacetime, in both the classical and quantum senses. Field theories on dS spacetime are among the most studied mathematical models of the Universe, whether for its earlier period (inflationary phase) or for its current phase of expansion acceleration (dark energy or cosmological constant). Classical elementary systems are Hamiltonian phase spaces, which are associated with co-adjoint orbits of the relativity group. On the other hand, quantum elementary systems are associated with (projective) unitary irreducible...
This book reviews the construction of elementary systems living in de Sitter (dS) spacetime, in both the classical and quantum senses. Field theories ...
This textbook provides an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, readers are introduced to techniques to obtain exact solutions of NLPDEs. The chapters include the following topics: Nonlinear PDEs are Everywhere; Differential Substitutions; Point and Contact Transformations; First Integrals; and Functional Separability. Readers are guided through these chapters and are provided with several detailed examples. Each chapter ends with a series of exercises illustrating...
This textbook provides an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PD...
This textbook is an introduction to the methods needed to solve partial differential equations (PDEs). Readers are introduced to PDEs that come from a variety of fields in engineering and the natural sciences. The chapters include the following topics: First Order PDEs, Second Order PDEs, Fourier Series, Separation of Variables, the Fourier Transform, and higher dimensional problems. Readers are guided through these chapters where techniques for solving first and second order PDEs are introduced. Each chapter ends with series of exercises to facilitate learning as well as illustrate the...
This textbook is an introduction to the methods needed to solve partial differential equations (PDEs). Readers are introduced to PDEs that come from a...
This book enables readers to understand, model, and predict complex dynamical systems using new methods with stochastic tools. The author presents a unique combination of qualitative and quantitative modeling skills, novel efficient computational methods, rigorous mathematical theory, as well as physical intuitions and thinking. An emphasis is placed on the balance between computational efficiency and modeling accuracy, providing readers with ideas to build useful models in practice. Successful modeling of complex systems requires a comprehensive use of qualitative and quantitative modeling...
This book enables readers to understand, model, and predict complex dynamical systems using new methods with stochastic tools. The author presents a u...
This book provides practical demonstrations of how to carry out definite integrals with Monte Carlo methods using Mathematica. Random variates are sampled by the inverse transform method and the acceptance-rejection method using uniform, linear, Gaussian, and exponential probability distribution functions. A chapter on the application of the Variational Quantum Monte Carlo method to a simple harmonic oscillator is included. These topics are all essential for students of mathematics and physics. The author includes thorough background on each topic covered within the book in order to help...
This book provides practical demonstrations of how to carry out definite integrals with Monte Carlo methods using Mathematica. Random variates are s...
This book is intended for a first-semester course in calculus, which begins by posing a question: how do we model an epidemic mathematically? The authors use this question as a natural motivation for the study of calculus and as a context through which central calculus notions can be understood intuitively. The book’s approach to calculus is contextual and based on the principle that calculus is motivated and elucidated by its relevance to the modeling of various natural phenomena. The authors also approach calculus from a computational perspective, explaining that many natural phenomena...
This book is intended for a first-semester course in calculus, which begins by posing a question: how do we model an epidemic mathematically? The auth...
This book examines the most fundamental parts of convex analysis and its applications to optimization and location problems. Accessible techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and to build a theory of generalized differentiation for convex functions and sets in finite dimensions. The book serves as a bridge for the readers who have just started using convex analysis to reach deeper topics in the field. Detailed proofs are presented for most of the results in the book and also included are many figures and exercises for...
This book examines the most fundamental parts of convex analysis and its applications to optimization and location problems. Accessible techniques of...
This book explores fractional differential equations with a fixed point approach. The authors highlight the existence, uniqueness, and stability results for various classes of fractional differential equations. All of the problems in the book also deal with some form of of the well-known Hilfer fractional derivative, which unifies the Riemann-Liouville and Caputo fractional derivatives. Classical and new fixed point theorems, associated with the measure of noncompactness in Banach spaces as well as several generalizations of the Gronwall's lemma, are employed as tools. The book is based on...
This book explores fractional differential equations with a fixed point approach. The authors highlight the existence, uniqueness, and stability resul...
This book presents a short introduction to the main tools of optimization methodology including linear programming, steepest descent, conjugate gradients, and the Karush-Kuhn-Tucker-John conditions. Each topic is developed in terms of a specific physical model, so that the strategy behind every step is motivated by a logical, concrete, easily visualized objective. A quick perusal of the Fibonacci search algorithm provides a simple and tantalizing first encounter with optimization theory, and a review of the max-min exposition of one-dimensional calculus prepares readers for the more...
This book presents a short introduction to the main tools of optimization methodology including linear programming, steepest descent, conjugate gradi...