Contains an account of numerical solutions of differential equations of elementary problems of Physics using Euler and 2nd order Runge-Kutta methods and Mathematica 6.0. The problems are motion under constant force, motion under Hooke's law force, and motion under a combination of Hooke's law force and a velocity dependent damping force.
Contains an account of numerical solutions of differential equations of elementary problems of Physics using Euler and 2nd order Runge-Kutta methods a...
Contains an account of numerical solutions of differential equations of elementary problems of Physics using Euler and 2nd order Runge-Kutta methods and Mathematica 6.0. The problems are motion under constant force, motion under Hooke's law force, and motion under a combination of Hooke's law force and a velocity dependent damping force.
Contains an account of numerical solutions of differential equations of elementary problems of Physics using Euler and 2nd order Runge-Kutta methods a...
This book provides practical demonstrations of how to carry out definite integrals with Monte Carlo methods using Mathematica. Random variates are sampled by the inverse transform method and the acceptance-rejection method using uniform, linear, Gaussian, and exponential probability distribution functions. A chapter on the application of the Variational Quantum Monte Carlo method to a simple harmonic oscillator is included. These topics are all essential for students of mathematics and physics. The author includes thorough background on each topic covered within the book in order to help...
This book provides practical demonstrations of how to carry out definite integrals with Monte Carlo methods using Mathematica. Random variates are s...