The book is about exact space-time models of the gravitational fields produced by gravitational radiation. The authors’ extensive work in the field is reviewed in order to stimulate the study of such models, that have been known for a long time, and to highlight interesting physical aspects of the existing models in some novel detail. There is an underlying simplicity to the gravitational radiation studied in this book. Apart from the basic assumption that the radiation has clearly identifiable wave fronts, the gravitational waves studied are directly analogous to electromagnetic waves. The...
The book is about exact space-time models of the gravitational fields produced by gravitational radiation. The authors’ extensive work in the field ...
This book provides a modern perspective on the analytic structure of scattering amplitudes in quantum field theory, with the goal of understanding and exploiting consequences of unitarity, causality, and locality. It focuses on the question: Can the S-matrix be complexified in a way consistent with causality? The affirmative answer has been well understood since the 1960s, in the case of 2→2 scattering of the lightest particle in theories with a mass gap at low momentum transfer, where the S-matrix is analytic everywhere except at normal-threshold branch cuts. We ask whether an analogous...
This book provides a modern perspective on the analytic structure of scattering amplitudes in quantum field theory, with the goal of understanding and...
This book explores interesting possibilities of extracting information about quantum states from data readily obtained from experiments, such as tomograms and expectation values of appropriate observables. The procedures suggested for identifying nonclassical effects such as wave packet revivals, squeezing and entanglement solely from tomograms circumvent detailed state reconstruction. Several bipartite entanglement indicators are defined based on tomograms, and their efficacy assessed in models of atom-field interactions and qubit systems. Tools of classical ergodic theory such as time...
This book explores interesting possibilities of extracting information about quantum states from data readily obtained from experiments, such as tomog...
This book presents a review of various issues related to Lorentz symmetry breaking. Explicitly, we consider (i) motivations for introducing Lorentz symmetry breaking, (ii) classical aspects of Lorentz-breaking field theory models including typical forms of Lorentz-breaking additive terms, wave propagation in Lorentz-breaking theories, and mechanisms for breaking the Lorentz symmetry; (iii) quantum corrections in Lorentz-breaking theories, especially the possibilities for perturbation generating the most interesting Lorentz-breaking terms; (iv) correspondence between non-commutative field...
This book presents a review of various issues related to Lorentz symmetry breaking. Explicitly, we consider (i) motivations for introducing Lorentz sy...
This brief book introduces the Poisson-Boltzmann equation in three chapters that build upon one another, offering a systematic entry to advanced students and researchers. Chapter one formulates the equation and develops the linearized version of Debye-Hückel theory as well as exact solutions to the nonlinear equation in simple geometries and generalizations to higher-order equations.Chapter two introduces the statistical physics approach to the Poisson-Boltzmann equation. It allows the treatment of fluctuation effects, treated in the loop expansion, and in a variational approach. First...
This brief book introduces the Poisson-Boltzmann equation in three chapters that build upon one another, offering a systematic entry to advanced stude...
This book, written by two pioneers in the field, provides a clear and concise description of memristors and other memory elements. It stresses the difference between their mathematical definition and physical reality. The reader will then be able to distinguish between what is experimentally realizable and various fictitious claims that plague the scientific literature. The discussion is kept simple enough that the book should be easily accessible not only to graduate students and researchers in Physics and Engineering, but also to undergraduate students interested in this topic.
This book, written by two pioneers in the field, provides a clear and concise description of memristors and other memory elements. It stresses the dif...
This book is a set of introductory lecture notes on Conformal Field Theory (CFT). Unlike most existing reviews on the subject, CFT is presented here from the perspective of a unitary quantum field theory in Minkowski space-time. The book starts with a non-perturbative formulation of quantum field theory (Wightman axioms) and then, gradually, focuses on the implications of scale and special conformal symmetry, all the way to the modern conformal bootstrap. This approach includes topics such as subtleties of conformal transformations in Minkowski space-time, the construction of Wightman...
This book is a set of introductory lecture notes on Conformal Field Theory (CFT). Unlike most existing reviews on the subject, CFT is presented here f...
This book is an English translation from a Hungarian book designed for graduate and postgraduate students about the use of variational principles in theoretical physics. Unlike many academic textbooks, it dashes across several lecture disciplines taught in physics courses. It emphasizes and demonstrates the use of the variational technique and philosophy behind the basic laws in mechanics, relativity theory, electromagnetism, and quantum mechanics. The book is meant for advanced students and young researchers in theoretical physics but, also, more experienced researchers can benefit from its...
This book is an English translation from a Hungarian book designed for graduate and postgraduate students about the use of variational principles in t...