This thesis documents the measurement of lifetime, width, mass, and couplings to two electroweak bosons of the recently-discovered Higgs boson using data from the CMS experiment at the Large Hadron Collider. Both on-shell (at the mass of around 125 GeV) and off-shell (above 200 GeV) Higgs boson production is studied and an excess of off-shell production with significance above two standard deviations is observed for the first time. The latter is a qualitative new way to study the Higgs field, responsible for generation of mass of all the known elementary particles. In addition,...
This thesis documents the measurement of lifetime, width, mass, and couplings to two electroweak bosons of the recently-discovered Higgs boson usin...
This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis...
This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as a...
This thesis makes significant advances in the quantitative understanding of two intrinsically linked yet technically very different phenomena in quantum chromodynamics (QCD). Firstly, the thesis investigates the soft probe of strong interaction topological fluctuations in the quark-gluon plasma (QGP) which is made possible via the anomalous chiral transport effects induced by such fluctuations. Here, the author makes contributions towards establishing the first comprehensive tool for quantitative prediction of the chiral magnetic effect in the QGP that is produced in heavy ion...
This thesis makes significant advances in the quantitative understanding of two intrinsically linked yet technically very different phenomen...
The interactions of DNA with force are central to manifold fields of inquiry, including the de novo design of DNA nanostructures, the use of DNA to probe the principles of biological self-assembly, and the operation of cellular nanomachines. This work presents a survey of three distinct ways coarse-grained simulations can help characterize these interactions. A non-equilibrium energy landscape reconstruction technique is validated for use with the oxDNA model and a practical framework to guide future applications is established. A novel method for calculating entropic forces in DNA molecules...
The interactions of DNA with force are central to manifold fields of inquiry, including the de novo design of DNA nanostructures, the use of DNA to pr...
This thesis presents analytical theoretical studies on the interplay between charge density waves (CDW) and superconductivity (SC) in the actively studied transition-metal dichalcogenide 1T-TiSe2. It begins by reapproaching a years-long debate over the nature of the phase transition to the commensurate CDW (CCDW) state and the role played by the intrinsic tendency towards excitonic condensation in this system. A Ginzburg-Landau phenomenological theory was subsequently developed to understand the experimentally observed transition from commensurate to incommensurate CDW (ICDW)...
This thesis presents analytical theoretical studies on the interplay between charge density waves (CDW) and superconductivity (SC) in the actively stu...
This book discusses the sources of uncertainty in future model projections of the tropical Pacific SST warming pattern under global warming. It mainly focuses on cloud radiation feedback and ocean dynamical effect, which reveal to be the two greatest sources of uncertainty in the tropical Pacific SST warming pattern. Moreover, the book presents a correction for model projections of the tropical Pacific SST warming pattern based on the concept of “observational constraints”; the corrected projection exhibits a more El Niño-like warming pattern.
This book discusses the sources of uncertainty in future model projections of the tropical Pacific SST warming pattern under global warming....
This book explores novel computational strategies for simulating excess energy dissipation alongside transient structural changes in photoexcited molecules, and accompanying solvent rearrangements. It also demonstrates in detail the synergy between theoretical modelling and ultrafast experiments in unravelling various aspects of the reaction dynamics of solvated photocatalytic metal complexes.
Transition metal complexes play an important role as photocatalysts in solar energy conversion, and the rational design of metal-based photocatalytic systems with...
This book explores novel computational strategies for simulating excess energy dissipation alongside transient structural changes in photoex...
This book discusses novel methods for planning and coordinating converters when an existing point-to-point (PtP) HVDC link is expanded into a multi-terminal HVDC (MTDC) system. It demonstrates that expanding an existing PtP HVDC link is the best way to build an MTDC system, and is especially a better option than the build-from-scratch approach in cases where several voltage-sourced converter (VSC) HVDC links are already in operation.
The book reports in detail on the approaches used to estimate the new steady-state operation limits of the expanded system and examines the factors...
This book discusses novel methods for planning and coordinating converters when an existing point-to-point (PtP) HVDC link is expanded into a multi...
This thesis presents the discovery of a surprising phase transition between a topological and a broken symmetry phase. Phase transitions between broken symmetry phases involve a change in symmetry and those between topological phases require a change in topological order; in rare cases, however, transitions may occur between these two broad classes of phases in which the vanishing of the topological order is accompanied by the emergence of a broken symmetry. This thesis describes observations of such a special phase transition in the two-dimensional electron gas confined in the GaAs/AlGaAs...
This thesis presents the discovery of a surprising phase transition between a topological and a broken symmetry phase. Phase transitions between broke...
This book presents the comprehensive results of experimental and numerical investigations of glass façade breakage behavior under fire conditions. First of all, full-scale frame and point-supported glass façades, incorporating single, double and coated glazing, were tested under pool fire conductions. The results determined the effects of different glass frames, types of glass, and thermal shocks on breakage behavior. Small-scale tests, using the Material Testing System (MTS) 810, Netzsch Dilatometer and FE-SEM, were also performed at different temperatures to determine the basic...
This book presents the comprehensive results of experimental and numerical investigations of glass façade breakage behavior under fire conditions....