Classical Sobolev spaces, based on Lebesgue spaces on an underlying domain with smooth boundary, are not only of considerable intrinsic interest but have for many years proved to be indispensible in the study of partial differential equations and variational problems. Many developments of the basic theory since its inception arise in response to concrete problems, for example, with the (ubiquitous) sets with fractal boundaries.
The theory will probably enjoy substantial further growth, but even now a connected account of the mature parts of it makes a useful addition to the...
Classical Sobolev spaces, based on Lebesgue spaces on an underlying domain with smooth boundary, are not only of considerable intrinsic interest bu...
In this book the seminal 1970 Moscow thesis of Grigoriy A. Margulis is published for the first time. Entitled "On Some Aspects of the Theory of Anosov Systems," it uses ergodic theoretic techniques to study the distribution of periodic orbits of Anosov flows. The thesis introduces the "Margulis measure" and uses it to obtain a precise asymptotic formula for counting periodic orbits. This has an immediate application to counting closed geodesics on negatively curved manifolds. The thesis also contains asymptotic formulas for the number of lattice points on universal coverings of compact...
In this book the seminal 1970 Moscow thesis of Grigoriy A. Margulis is published for the first time. Entitled "On Some Aspects of the Theory of Ano...
Positivity is one of the most basic mathematical concepts, involved in many areas of mathematics (analysis, real algebraic geometry, functional analysis, etc.). The main objective of the book is to give useful characterizations of polynomials. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed.
Positivity is one of the most basic mathematical concepts, involved in many areas of mathematics (analysis, real algebraic geometry, functional ana...
Spherical buildings are certain combinatorial simplicial complexes intro- duced, at first in the language of "incidence geometries," to provide a sys- tematic geometric interpretation of the exceptional complex Lie groups. (The definition of a building in terms of chamber systems and definitions of the various related notions used in this introduction such as "thick," "residue," "rank," "spherical," etc. are given in Chapter 39. ) Via the notion of a BN-pair, the theory turned out to apply to simple algebraic groups over an arbitrary field. More precisely, to any absolutely simple algebraic...
Spherical buildings are certain combinatorial simplicial complexes intro- duced, at first in the language of "incidence geometries," to provide a sys-...
This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc.
This book will be particularly useful for researchers in approximation and...
This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a f...
First published in German in 1970 and translated into Russian in 1973, this classic now becomes available in English. After introducing the theory of pro-p groups and their cohomology, it discusses presentations of the Galois groups G S of maximal p-extensions of number fields that are unramified outside a given set S of primes. It computes generators and relations as well as the cohomological dimension of some G S, and gives applications to infinite class field towers.The book demonstrates that the cohomology of groups is very useful for studying Galois theory of number fields; at the...
First published in German in 1970 and translated into Russian in 1973, this classic now becomes available in English. After introducing the theory of ...
This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva- ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n:::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres....
This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva- ture...
High-dimensional knot theory is the study of the embeddings of n-dimensional manifolds in (n+2)-dimensional manifolds, generalizing the traditional study of knots in the case n=1. The main theme is the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory. Many results in the research literature are thus brought into a single framework, and new results are obtained. The treatment is particularly effective in dealing with open books,...
High-dimensional knot theory is the study of the embeddings of n-dimensional manifolds in (n+2)-dimensional manifolds, generalizing the traditional st...
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents....
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integ...
The aim of this book is to present an exposition of the theory of alge- braic numbers, excluding class-field theory and its consequences. There are many ways to develop this subject; the latest trend is to neglect the classical Dedekind theory of ideals in favour of local methods. However, for numeri- cal computations, necessary for applications of algebraic numbers to other areas of number theory, the old approach seems more suitable, although its exposition is obviously longer. On the other hand the local approach is more powerful for analytical purposes, as demonstrated in Tate's thesis....
The aim of this book is to present an exposition of the theory of alge- braic numbers, excluding class-field theory and its consequences. There are ma...